

1. Show that every manifold has a nonzero complete vector field.
2. Let $f : M \rightarrow N$ be a smooth map of smooth manifolds, let $\sigma : [a, b] \rightarrow M$ be a curve in M , and let ω be a one-form on N . Show that

$$\int_{\sigma} f^* \omega = \int_{f \circ \sigma} \omega.$$

3. Suppose σ is a locally conservative 1-form on S^2 . Show there is $f \in C^\infty(S^2)$ with $\sigma = df$.
4. Let M be a manifold, and $x, y \in M$. Show that for any $D > 0$, there is a Riemannian metric g on M with $d_g(x, y) = D$.
5. Define a helix $H \subset \mathbb{R}^3$ parametrically by $(r \cos(\theta), r \sin(\theta), \theta)$ for $r \in [0, \infty]$ and $\theta \in \mathbb{R}$. Calculate the induced metric on H .
6. Given a Riemannian metric g on the circle S^1 , define the $L(g)$ to be the length (using g) of the curve that goes once around the circle. Show that any two metrics g, h on S^1 with $L(g) = L(h)$ are isometric.

Hint: map to the canonical circle C of length L , where $C = [0, L]/(L \sim 0)$ with metric dt^2 .

7. Given a one form $\omega \in \mathcal{T}^1(M)$ and a vector field X , define $\mathcal{L}_X \omega$ by

$$(\mathcal{L}_X \omega)(Y) = \omega([X, Y]) - X \cdot \omega(Y).$$

Show that $\mathcal{L}_X \omega$ is a tensor.

8. Define an r -covariant tensor σ on \mathbb{R}^2 by summing 2^r terms:

$$\begin{aligned} \sigma = & dx \otimes dx \otimes \cdots \otimes dx \otimes dx \\ & + dx \otimes dx \otimes \cdots \otimes dx \otimes dy \\ & + dx \otimes dx \otimes \cdots \otimes dy \otimes dx \\ & \dots \\ & + dy \otimes dy \otimes \cdots \otimes dy \otimes dy \end{aligned}$$

where the sum is over all possible choices of dx and dy in each r -fold product term.
Find $\iota^*(\sigma)$, where ι is the inclusion map $S^1 \rightarrow \mathbb{R}^2$.