

1. Show that every manifold has a nonzero complete vector field.

Solution: Let $x \in M$ be any point, and choose a coordinate neighborhood U of x and a cutoff function f on M which is 1 at x and has compact support in U . Let Y be any nonzero vector field defined on U (for example, $Y = \frac{\partial}{\partial x^1}$, where x^1 is the first coordinate function). Define $X = fY$ on U , and extend to all of M by zero. Then X is a nonzero, smooth vector field on M . Because X is compactly supported, it is complete.

2. Let $f : M \rightarrow N$ be a smooth map of smooth manifolds, let $\sigma : [a, b] \rightarrow M$ be a curve in M , and let ω be a one-form on N . Show that

$$\int_{\sigma} f^* \omega = \int_{f \circ \sigma} \omega.$$

Solution:

$$\begin{aligned} \int_{\sigma} f^* \omega &= \int_a^b (f^* \omega)(\sigma'(t)) dt \\ &= \int_a^b \omega(Tf\sigma'(t)) dt \\ &= \int_a^b \omega((f \circ \sigma)'(t)) dt \\ &= \int_{f \circ \sigma} \omega. \end{aligned}$$

3. Suppose σ is a locally conservative 1-form on S^2 . Show there is $f \in C^\infty(S^2)$ with $\sigma = df$.

Solution: Since S^2 is simply connected, any closed curve γ on S^2 is homotopic to a point. Because σ is locally conservative, path integrals are homotopy invariant so that $\int_{\gamma} \sigma = 0$. Then σ is conservative, hence exact, hence equal to df for some f . More specifically, one could fix $x_0 \in M$ and define $f(x) = \int_{\gamma} \sigma$ where γ is any curve joining x_0 to x .

4. Let M be a manifold, and $x, y \in M$. Show that for any $D > 0$, there is a Riemannian metric g on M with $d_g(x, y) = D$.

Solution: Let h be any Riemannian metric on M , and put $\lambda = d_h(x, y) > 0$. Define $g = \frac{D^2}{\lambda^2}h$ (which is easily seen to be a Riemannian metric). Then for any curve $\gamma : [a, b] \rightarrow M$ with $\gamma(a) = x$ and $\gamma(b) = y$, we have

$$\text{len}_g(\gamma) = \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt = \int_a^b \sqrt{\frac{D^2}{\lambda^2}h(\gamma'(t), \gamma'(t))} dt = \frac{D}{\lambda} \text{len}_h(\gamma)$$

Since $\lambda = d_h(x, y)$ is the infimum over all curves γ of $\text{len}_h(\gamma)$, the infimum of $\text{len}_g(\gamma)$ is $d_g(x, y) = \frac{D}{\lambda}d_h(x, y) = D$.

5. Define a helix $H \subset \mathbb{R}^3$ parametrically by $(r \cos(\theta), r \sin(\theta), \theta)$ for $r \in [0, \infty]$ and $\theta \in \mathbb{R}$. Calculate the induced metric on H .

Solution: $dx = \cos(\theta)dr - r \sin(\theta)d\theta$, $dy = \sin(\theta)dr + r \cos(\theta)d\theta$, and $dz = d\theta$, so

$$dx^2 + dy^2 + dz^2 = dr^2 + (1 + r^2)d\theta^2$$

which gives the metric on H .

6. Given a Riemannian metric g on the circle S^1 , define the $L(g)$ to be the length (using g) of the curve that goes once around the circle. Show that any two metrics g, h on S^1 with $L(g) = L(h)$ are isometric.

Hint: map to the canonical circle C of length L , where $C = [0, L]/(L \sim 0)$ with metric dt^2 .

Solution: Consider S^1 with parameter $\theta \in [0, 2\pi]$. Write $g = c(\theta)d\theta^2$ for some smooth function $c(\theta)$ which is periodic with period 2π . Since g is positive definite, c is positive, so put $f(\theta) = \sqrt{c(\theta)}$, a positive, smooth periodic function with $g = f(\theta)^2d\theta^2$. Define

$$F(\theta) = \int_0^\theta f(t)dt.$$

Then

$$F(\theta + 2\pi) - F(\theta) = \int_\theta^{\theta + 2\pi} f(\theta)d\theta = \int_0^{2\pi} f(\theta)d\theta = \int_0^{2\pi} \sqrt{g\left(\frac{\partial}{\partial\theta}, \frac{\partial}{\partial\theta}\right)}d\theta = L(g) = L$$

which shows that $\theta \rightarrow t = F(\theta)$ gives a well defined map from S^1 to C . Now

$$dt = dF(\theta) = F'(\theta)d\theta = f(\theta)d\theta$$

which shows that F takes g to dt^2 , so that (S^1, g) and (C, dt^2) are isometric. Since (S^1, g) and (S^1, h) are both isometric to (C, dt^2) , they are isometric to each other.

7. Given a one form $\omega \in \mathcal{T}^1(M)$ and a vector field X , define $\mathcal{L}_X\omega$ by

$$(\mathcal{L}_X\omega)(Y) = \omega([X, Y]) - X.\omega(Y).$$

Show that $\mathcal{L}_X\omega$ is a tensor.

Solution: For any vector field Y and $f \in C^\infty(M)$, we have:

$$\mathcal{L}_X\omega(fY) = \omega([X, fY]) - X\omega(fY) \quad (1)$$

$$= \omega(X(fY) - (fY)X) - X(f\omega(Y)) \quad (2)$$

$$= \omega((Xf)Y + fXY - fYX) - (Xf)\omega(Y) - fX\omega(Y) \quad (3)$$

$$= (Xf)\omega(Y) + f\omega([X, Y]) - (Xf)\omega(Y) - fX\omega(Y) \quad (4)$$

$$= f\mathcal{L}_X\omega(Y) \quad (5)$$

Since $\mathcal{L}_X\omega$ is $C^\infty(M)$ -linear, it's a tensor.

8. Define an r -covariant tensor σ on \mathbb{R}^2 by summing 2^r terms:

$$\begin{aligned} \sigma = & dx \otimes dx \otimes \cdots \otimes dx \otimes dx \\ & + dx \otimes dx \otimes \cdots \otimes dx \otimes dy \\ & + dx \otimes dx \otimes \cdots \otimes dy \otimes dx \\ & \dots \\ & + dy \otimes dy \otimes \cdots \otimes dy \otimes dy \end{aligned}$$

where the sum is over all possible choices of dx and dy in each r -fold product term. Find $\iota^*(\sigma)$, where ι is the inclusion map $S^1 \rightarrow \mathbb{R}^2$.

Solution: Replace $dx = \cos\theta d\theta$ and $dy = \sin\theta d\theta$, then use the binomial theorem to get $(\cos(\theta) + \sin(\theta))^r d\theta \otimes \cdots \otimes d\theta$. A similar approach is to notice that $\sigma = (dx + dy)^r$.