

L'Hopital's Rule

Theorem (L'Hopital's rule). *If $\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} g(x) = 0$, then*

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(a)}{g'(a)},$$

provided the derivatives in question exist for all $x \neq a$ and provided the right hand limit exists.

Some limits can be converted to this form by first taking logarithms, or by substituting $1/x$ for x .

Problems

1. Evaluate

$$\lim_{n \rightarrow \infty} 4^n \left(1 - \cos\left(\frac{\theta}{2^n}\right) \right),$$

2. Evaluate the following limits:

(a)

$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n} \right)^n$$

(b)

$$\lim_{n \rightarrow \infty} \left(\frac{n+1}{n+2} \right)^n$$

(c)

$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n^2} \right)^n$$

(d)

$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n} \right)^{n^2}$$

3. Evaluate

$$\lim_{n \rightarrow \infty} \frac{2p_n P_n}{p_n + P_n},$$

where $p_n = (1 + 1/n)^n$ and $P_n = (1 + 1/n)^{n+1}$.

4. Evaluate

$$\lim_{x \rightarrow \infty} \left(\frac{1}{x} \frac{a^x - 1}{a - 1} \right)^{1/x}.$$

where $a > 1$.

5. Let $f(t)$ and $f'(t)$ be differentiable on $[a, x]$ and for each x suppose there is a number c_x such that $a < c_x < x$ and

$$\int_a^x f(t)dt = f(c_x)(x - a).$$

Assume that $f'(a) \neq 0$. Then prove that

$$\lim_{x \rightarrow a} \frac{c_x - a}{x - a} = \frac{1}{2}.$$

6. Calculate

$$\lim_{x \rightarrow \infty} x \int_0^x e^{t^2 - x^2} dt.$$

7. Prove that the function $y = (x^2)^x$, $y(0) = 1$, is continuous at $x = 0$.