
1

Saint Louis University

Intro to Linux and C

CSCI 2400/ ECE 3217: Computer Architecture

Instructors:

David Ferry

2

Overview

 Linux

 C

 Hello program in C

 Compiling

Saint Louis University

3

History of Linux

 Way back in the day: Bell Labs Unix

 Widely available to students and instructors

 Very machine-independent

 Some direct Unix branches (e.g. Berkeley Unix or BSD)

 Others were inspired by Unix
 Minix- by Andrew S. Tannenbaum, an educational micro kernel

 Could re-implement the high-level design of Unix (e.g. Minix was originally
system-call compatible with Unix)

 Linus Torvalds saw Minix and wanted to do his own version
 Wrote basic kernel from scratch

 Borrowed good ideas from Minix

 Included early support for GNU project software

 Completely free OS and system software

Saint Louis University

4

Linux Today

 Very small usage in desktop/laptop market (~3% in US)

 Android is the biggest OS in mobile computing (~53% of US)

 Up to 85% of devices worldwide

 Linux drives internet servers (~97% of public servers)

 Linux drives supercomputing (~99% of TOP500 computers)

Saint Louis University

5

Getting Started with Linux at SLU

 Linux classroom and Linux lab on 1st floor Ritter

 Department Linux server: hopper.slu.edu

 Should use same username as SLU, but different password

 Talk to Dennis about password issues (office adjacent to lab)

 Recommended: Login to hopper.slu.edu via ssh

 Suggested: Work on local machine in lab

 Suggested: Login to hopper.slu.edu via NoMachine

 You may work however you like, but I can’t support other
methods (e.g. Linux in a virtual machine on your laptop)

Saint Louis University

6

Logging in via SSH

 From OSX – can use terminal directly

 Can transfer files with ‘scp’ command

 From Windows – can use an ssh client
 My favorite: Secure Shell extension for Chrome browser

 Plenty of others, just search for them

 Transfer files via WinSCP

 Username: your SLU username

 Hostname: hopper.slu.edu

 Via terminal:

 ssh dferry@hopper.slu.edu

Saint Louis University

7

Using the command line

 Enter one command per line

 Lots of programs to accomplish what you want to do

 Just search “How do I accomplish XYZ in Linux terminal?”

 Useful
commands:

Command Description

ls Lists contents of current directory

ls -l Lists contents in list format

cd Change current directory

mkdir Make a new directory

rm Remove a file

rm -r Remove a directory

cp file1 file2 Copies file1 to file2

cat file Prints file to the terminal

wget url Downloads url to the current directory

Saint Louis University

8

Editing Text Files

 Text files- very important!

 C programs for this class

 Very efficient storage for data and configuration

 Classic editors: vi and emacs
 Hard to get started initially

 Way faster once you get the hang of it

 Designed for low-bandwidth, spotty connections (think phone modems)

 Definitely worth it

 Other editors:

 Text editors- search them!

 GUI editors- search them!

Saint Louis University

9

For next time:

 Find a good Linux environment you’d like to use

 Try logging into hopper.slu.edu

 Next homework involves writing C code

Saint Louis University

10

Overview

 Linux

 C

 Hello program in C

 Compiling

Saint Louis University

11

The C Language

 Developed at Bell Labs to write Unix

 Practical language for practical projects

 Most OSes are written mostly in C (some assembly code)

 Most system libraries and tools are written entirely in C

 Small, simple language

 Easy to learn (especially at the time)

 Easy to port to different platforms

 Designed to replace Assembly Language

 Provides low-level access to memory

 Most operations map closely to assembly language operations

 Strongly typed, static type checking
 int, unsigned, float, double, char, etc.

 No runtime protection

Saint Louis University

12

Type Checking in C

 Several primitive types:

 int, unsigned, float, double, char, etc.

 The compiler will not warn about possibly unsafe operations:
int a;
unsigned b;
b = a;

 Correctness is up to the programmer!
 This kind of stuff is usually a bad idea though…

Saint Louis University

13

Command Line Input in C

 The main() function has two arguments:

 argc is the number of arguments

 argv is a vector of strings that hold those arguments

E.g.: printing all values as strings

int main (int argc, char* argv[]){

 for(i = 0; i < argc; i++){

 printf(“%s\n”, argv[i]);

 }

}

14

Converting Strings to Numbers

 How to convert “42” into the numeric value 42?

 atoi()

 Fast, easy, but dirty

 No safety or type checking

 Undefined behavior on overflow

 scanf()

 Works with floats and other data types

 Undefined behavior on overflow

 strtol()

 Robust error checking, industrial grade

15

Manual Pages! (A.K.A. man pages)

 All of C (and much more beside) is documented in the
manual pages, use them!

 At the command prompt:

 man man – manual for the manual pages()

 man atoi – manual for the function atoi()

 man scanf – manual page for the function scanf()

 Sometimes there are collisions:

 man printf – manual page for the bash command printf

 man 3 printf – manual page for the C function printf()

 man man – shows man page sections

16

C Operators

 Usual arithmetic operators:

 +, -, *, %, /, =

 Bitwise operators:

 & - AND

 | - OR

 ^ - XOR

 ~ - complement

 << - left shift

 >> - right shift

 Ternary operator:

 Logical Operators:

 && - logical AND

 || - logical OR

 ! - logical NOT

 Relational Operators
 == - True if equal

 != - True if not equal

 < - True if less than

 > - True if greater than

 <= - True if less or equal

 >= - True if greater or equal

Saint Louis University

(cond) ? (exec if true) : (exec if false)

17

Hello, world! in C

#include <stdio.h>

int main(int argc, char* argv[]){

 int var = 42;

 printf(“Hello, world!\n”);

 printf(“Value of var: %d\n”, var);

 return 0;

}

18

Compiling C programs

 We will use the gcc compiler

 If you have a program named prog.c:

 gcc -Wall -o prog prog.c

 -Wall turns on all warnings

 -o <name> output file name (default is a.out)

 Program files are listed by themselves

 Order isn’t important

