
1

Saint Louis University

Intro to Linux and C

CSCI 2400/ ECE 3217: Computer Architecture

Instructors:

David Ferry

2

Overview

 Linux

 C

 Hello program in C

 Compiling

Saint Louis University

3

History of Linux

 Way back in the day: Bell Labs Unix

 Widely available to students and instructors

 Very machine-independent

 Some direct Unix branches (e.g. Berkeley Unix or BSD)

 Others were inspired by Unix
 Minix- by Andrew S. Tannenbaum, an educational micro kernel

 Could re-implement the high-level design of Unix (e.g. Minix was originally
system-call compatible with Unix)

 Linus Torvalds saw Minix and wanted to do his own version
 Wrote basic kernel from scratch

 Borrowed good ideas from Minix

 Included early support for GNU project software

 Completely free OS and system software

Saint Louis University

4

Linux Today

 Very small usage in desktop/laptop market (~3% in US)

 Android is the biggest OS in mobile computing (~53% of US)

 Up to 85% of devices worldwide

 Linux drives internet servers (~97% of public servers)

 Linux drives supercomputing (~99% of TOP500 computers)

Saint Louis University

5

Getting Started with Linux at SLU

 Linux classroom and Linux lab on 1st floor Ritter

 Department Linux server: hopper.slu.edu

 Should use same username as SLU, but different password

 Talk to Dennis about password issues (office adjacent to lab)

 Recommended: Login to hopper.slu.edu via ssh

 Suggested: Work on local machine in lab

 Suggested: Login to hopper.slu.edu via NoMachine

 You may work however you like, but I can’t support other
methods (e.g. Linux in a virtual machine on your laptop)

Saint Louis University

6

Logging in via SSH

 From OSX – can use terminal directly

 Can transfer files with ‘scp’ command

 From Windows – can use an ssh client
 My favorite: Secure Shell extension for Chrome browser

 Plenty of others, just search for them

 Transfer files via WinSCP

 Username: your SLU username

 Hostname: hopper.slu.edu

 Via terminal:

 ssh dferry@hopper.slu.edu

Saint Louis University

7

Using the command line

 Enter one command per line

 Lots of programs to accomplish what you want to do

 Just search “How do I accomplish XYZ in Linux terminal?”

 Useful
commands:

Command Description

ls Lists contents of current directory

ls -l Lists contents in list format

cd Change current directory

mkdir Make a new directory

rm Remove a file

rm -r Remove a directory

cp file1 file2 Copies file1 to file2

cat file Prints file to the terminal

wget url Downloads url to the current directory

Saint Louis University

8

Editing Text Files

 Text files- very important!

 C programs for this class

 Very efficient storage for data and configuration

 Classic editors: vi and emacs
 Hard to get started initially

 Way faster once you get the hang of it

 Designed for low-bandwidth, spotty connections (think phone modems)

 Definitely worth it

 Other editors:

 Text editors- search them!

 GUI editors- search them!

Saint Louis University

9

For next time:

 Find a good Linux environment you’d like to use

 Try logging into hopper.slu.edu

 Next homework involves writing C code

Saint Louis University

10

Overview

 Linux

 C

 Hello program in C

 Compiling

Saint Louis University

11

The C Language

 Developed at Bell Labs to write Unix

 Practical language for practical projects

 Most OSes are written mostly in C (some assembly code)

 Most system libraries and tools are written entirely in C

 Small, simple language

 Easy to learn (especially at the time)

 Easy to port to different platforms

 Designed to replace Assembly Language

 Provides low-level access to memory

 Most operations map closely to assembly language operations

 Strongly typed, static type checking
 int, unsigned, float, double, char, etc.

 No runtime protection

Saint Louis University

12

Type Checking in C

 Several primitive types:

 int, unsigned, float, double, char, etc.

 The compiler will not warn about possibly unsafe operations:
int a;
unsigned b;
b = a;

 Correctness is up to the programmer!
 This kind of stuff is usually a bad idea though…

Saint Louis University

13

Command Line Input in C

 The main() function has two arguments:

 argc is the number of arguments

 argv is a vector of strings that hold those arguments

E.g.: printing all values as strings

int main (int argc, char* argv[]){

 for(i = 0; i < argc; i++){

 printf(“%s\n”, argv[i]);

 }

}

14

Converting Strings to Numbers

 How to convert “42” into the numeric value 42?

 atoi()

 Fast, easy, but dirty

 No safety or type checking

 Undefined behavior on overflow

 scanf()

 Works with floats and other data types

 Undefined behavior on overflow

 strtol()

 Robust error checking, industrial grade

15

Manual Pages! (A.K.A. man pages)

 All of C (and much more beside) is documented in the
manual pages, use them!

 At the command prompt:

 man man – manual for the manual pages()

 man atoi – manual for the function atoi()

 man scanf – manual page for the function scanf()

 Sometimes there are collisions:

 man printf – manual page for the bash command printf

 man 3 printf – manual page for the C function printf()

 man man – shows man page sections

16

C Operators

 Usual arithmetic operators:

 +, -, *, %, /, =

 Bitwise operators:

 & - AND

 | - OR

 ^ - XOR

 ~ - complement

 << - left shift

 >> - right shift

 Ternary operator:



 Logical Operators:

 && - logical AND

 || - logical OR

 ! - logical NOT

 Relational Operators
 == - True if equal

 != - True if not equal

 < - True if less than

 > - True if greater than

 <= - True if less or equal

 >= - True if greater or equal

Saint Louis University

(cond) ? (exec if true) : (exec if false)

17

Hello, world! in C

#include <stdio.h>

int main(int argc, char* argv[]){

 int var = 42;

 printf(“Hello, world!\n”);

 printf(“Value of var: %d\n”, var);

 return 0;

}

18

Compiling C programs

 We will use the gcc compiler

 If you have a program named prog.c:

 gcc -Wall -o prog prog.c

 -Wall turns on all warnings

 -o <name> output file name (default is a.out)

 Program files are listed by themselves

 Order isn’t important

