
Mutant: Learning Congestion Control from Existing Protocols
via Online Reinforcement Learning

Lorenzo Pappone
Computer Science Department

Saint Louis University

Alessio Sacco
DAUIN

Politecnico di Torino

Flavio Esposito
Computer Science Department

Saint Louis University

Abstract
Learning how to control congestion remains a challenge de-
spite years of progress. Existing congestion control protocols
have demonstrated efficacy within specific network condi-
tions, inevitably behaving suboptimally or poorly in others.
Machine learning solutions to congestion control have been
proposed, though relying on extensive training and specific
network configurations. In this paper, we loosen such de-
pendencies by proposing Mutant, an online reinforcement
learning algorithm for congestion control that adapts to the
behavior of the best-performing schemes, outperforming them
in most network conditions. Design challenges included de-
termining the best protocols to learn from, given a network
scenario, and creating a system able to evolve to accommo-
date future protocols with minimal changes. Our evaluation on
real-world and emulated scenarios shows that Mutant achieves
lower delays and higher throughput than prior learning-based
schemes while maintaining fairness by exhibiting negligible
harm to competing flows, making it robust across diverse and
dynamic network conditions.

1 Introduction

Years of research on congestion control algorithms for
TCP [44] have produced creative solutions departing from
TCP Vegas [13], Fast [30], Compound [47], and the more
recent BBR [15], to name a few, with improvements in per-
formance results of more than 15% compared to Cubic [25],
the default in most Linux systems. BBR, rather than tradi-
tionally relying on packet loss to adjust the congestion win-
dow, (cwnd), uses round-trip time (rtt) and throughput data
to decide how fast to transmit data packets. TCP Vegas, a
delay-based protocol, only looks at the rtt to adjust the con-
gestion window. An increasing rtt, due, for example, to a
packet drop, causes Vegas to reduce its packet sending rate,
while a steady rtt causes Vegas to increase its sending rate
until the rtt increases again. These examples highlight that
traditional congestion control solutions rely on current net-
work stats such as rtt, throughput, and packet loss. As such,

they are mostly reactive (not proactive) to sudden network
changes. In addition, they rarely look at the past behaviors of
the network or their own historical behaviors in their analysis.

With the surge of machine learning performance in re-
cent years, promising approaches using Deep Learning (DL)
or Reinforcement Learning (RL) techniques have been pro-
posed to adjust performance, mostly by tuning the congestion
window [29]. As an example, Aurora [28], a variant of the
Performance-oriented Congestion Control (PCC) [21], uses
Deep Reinforcement Learning to adjust the congestion con-
trol actions empirically by observing the connection state
and the experienced performance. Owl [43], Orca, [2], and
Marten [39], three other RL-based congestion control proto-
cols, use Deep Q-Learning to determine the next congestion
window using metrics retrieved from the network stack. These
approaches share the idea of solving the congestion control
problem by instructing an agent to dynamically learn the
optimal congestion window (cwnd) via the RL framework.
Despite their learning ability as the network environments
change, their design is inherently limited by the training phase.
Congestion control parameters often exhibit complex inter-
actions and dependencies with various network factors, in-
cluding traffic load, topology changes, and routing dynamics.
Even when enough samples of the significant states are col-
lected offline, i.e., ahead of time, data drift problems remain,
and protocols experience performance degradations for their
lack of adaptability under new, unseen, changing conditions.

The good news is that years of research on congestion
control protocols have shown that some protocols can learn
how to perform well by observing specific network input
signals, and even though they fail in scenarios for which they
were not optimized, there is often another (existing) protocol
that does perform better in such scenarios. What if we could
learn from a team of protocols, each performing well in a
few complementary scenarios, without requiring exhaustive
and impractical data collections and without requiring the
one-size-fits-all protocol?

In this paper, we propose Mutant. While such a design is
inspired by the so-called imitation learning [20], deciding

which protocol Mutant should “imitate" or “mutate" into is
also a computationally hard problem even if we choose the
best-performing k protocols of the team offline. To solve this
problem bounding the optimality gap, we use the team se-
lection theory [31]. In particular, our algorithm solves the
following problem: Given a set of congestion control algo-
rithms available, which subset should we input to our online
reinforcement learning algorithm, so that our selection is
most likely to bring the best performance, i.e., smaller delays,
higher throughput, or both, for each network environment and
congestion state? We reduce this problem from the top-k
players in cooperating games and discuss the team selection
algorithm used by Mutant in Section 5.2. There are tens of
CC protocols to choose from and we show that having as
many protocols as possible leads to inefficiencies, not only
overhead. Similar problems have been applied in the context
of supervised machine learning, where individual features are
modeled as players and feature subsets as coalitions that yield
the best predictive performance [19].

In Section 4 we justify the chosen subsets of protocols
per each network scenario and discuss our lessons learned.
Among those, (1) the datasets available and the choice of
protocols to learn from are more important than the learning
algorithm, and (2) learning from too many protocols is coun-
terproductive: the performance degrades because, intuitively,
we explore too much and we do not exploit enough.

Aside from algorithmic challenges, to deploy a protocol
that mutates its behavior based on the underlying available
user-space and kernel implementations, we needed to solve
several system design challenges as well (Section 3). For ex-
ample, our kernel module implementation should be able to
quickly mutate into one of the congestion control algorithms
used to learn with minimal overhead. For performance rea-
sons, we focused on learning from congestion control proto-
cols already implemented in the kernel, such as Cubic, Hybla,
and TCP Vegas, but Mutant can be easily adapted to learn
from any transport protocol that uses sockets and returns con-
gestion window updates, including ML-based protocols. Our
evaluation results (Section 6), on real network traces and real-
world traffic, show that Mutant consistently performs among
the best protocols in all scenarios analyzed, for both delay-
sensitive and bandwidth-sensitive applications. We also ana-
lyzed Mutant’s fairness using the notion of harm [50], show-
ing promising results. From our evaluation, it is also clear
that the choice of which protocol set Mutant is programmed
to emulate influences its performance, just as humans should
not learn from anyone in any scenario. We review existing
literature in Section 7 and we present our conclusion in Sec-
tion 8.

2 Mutant: Motivation and Design Overview

Learning From Existing Protocols. The main insight behind
our protocol design is the idea that there is no one-size-fits-

Large Q.

Fixed BW
Low Bw

High RTT
Mixed Step

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
-D

el
ay

 R
at

io Single-Flow

Large Q.

Fixed BW
Low Bw

High RTT
Mixed Step

0.0

0.2

0.4

0.6

0.8

H
ar

m

Multi-Flow

Network Scenarios

Cubic Hybla BBR2 Vegas

Figure 1: Motivation for our study: Performance of a few
protocols in six different network environments, tput/delay
on a single-flow (left) and harm [50] in multi-flow scenarios
(right): low values translate to high fairness. Every protocol
performs well in only a selected group of network scenarios.

all congestion control for all scenarios, as confirmed by our
results in Figure 1. These results show the ratio between
throughput and delay, and the fairness performance of four
widely used TCP protocols. We consider the following six net-
work environments sampled from our experimental sets: fixed
bandwidth, low capacity, high rtt, large queue i.e., buffer of
the bottleneck router, mixed conditions i.e., large queue with
high RTT, step i.e., with regular and abrupt channel bandwidth
fluctuations. In Section 6.1, we detail these testing scenarios.
We observe that no protocol is dominant in all the cases for
single-flow settings. Cubic, for example, performs well in
stable conditions but fails across fluctuating bandwidth con-
ditions (step scenario). BBR2 [16], on the contrary, handles
these abrupt changes but is suboptimal for networks with low
capacity. When we instead consider a multi-flow scenario, fo-
cusing on the fairness of these protocols, expressed in terms of
harm, a notion introduced in [50] and defined in Section 6.4,
we can see that, e.g., BBR2 harms others in many use cases
but not in all scenarios.

The Challenge of Generalization. While adaptive and
learning-based solutions have been explored, we believe that
learning from past congestion window values is insufficient
and poorly adapted to unseen network conditions. Current
approaches attempting to achieve adequate model generaliza-
tion require a long offline training phase, e.g., [42, 43, 55]. In
Figure 2, we compare one state-of-the-art model as Sage [55]
against our online model. The offline learning process requires
vast data collection, expensive resources, and long training
sessions. Mutant quickly adapts to the network scenario while
achieving comparable or superior performance to the data-
driven model. Motivated by these results, we propose a system
that quickly adapts to diverse conditions and learns in real-
time from ongoing interactions with the underlying network
environment. In addition, our design principle is to offer the
community a system that, rather than autonomously adapting

0 1 2 3 4 5 6 7 8 9 10
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 U
til

iz
at

io
n

7 Days Training

Offline RL
Mutant

Figure 2: Mutant reduces the learning time overhead com-
pared to pretrained, data-driven ML models for congestion
control.

the best cwnd update strategy, considers other features to learn
what would be the best protocol in a given network state.

Mutant Overview. At the core of our solution, Mutant, lies
on an online Reinforcement Learning (RL) algorithm that
(1) quickly learns from existing congestion control schemes
by a real-time policy switching mechanism at fine-grained
intervals implemented in kernel, (2) minimizes the reaction
time to network changes, and (3) relies mostly on online data
with minimal offline adjustments. We present the overview of
Mutant in Figure 3, highlighting its main components. Our
online learning logic decides on the best CC scheme in real-
time during the communication. Two main components dic-
tate the selection of the best scheme at each time step: the
Protocol Manager and the Learning Module. The Protocol
Manager is a pluggable kernel module implemented follow-
ing the structure of the existing CC schemes in the Linux
kernel. Indeed, Mutant is a kernel module that can be loaded
as another kernel-based TCP congestion control protocol (i.e.,
Cubic, BBR2, Hybla, etc.). This component supports the key
low-level functionalities of Mutant’s system: (1) runs the real-
time CC scheme switching logic, (2) maintains the state of
each protocol during the execution, and (3) communicates the
network statistics to the user-space Learning Module module.

The Learning Module, instead, is a user-space component
that handles the algorithmic operations within our system.
This module is responsible for executing (1) the online rein-
forcement learning process and (2) the best starting protocols
using a top-k selection schema (Section 4). At each step of
the RL loop, Mutant switches the CC scheme in real-time,
by sampling from a pool of different protocols in the kernel.
The user-space module will learn the relationship between
the scheme selected and the features collected at each time
step, with the primary goal of maximizing the throughput and
minimizing the delay.

While designing our solution, we attempted to answer two
key questions: (1) What pool of CC protocols should we con-
sider in our deployment? (2) Which schema should we choose
at runtime? To answer the first question, we questioned if all
the CC schemes should be kept in the pool or if selecting only
a subset of them would benefit the overall performance of our

Figure 3: Overall architecture of Mutant. Two main compo-
nents are a kernel module hosting a set of TCP protocols and
a user-level module with the learning logic to decide when it
is convenient to mutate into another protocol.

solution. Our results show that a subset of the best-performing
policies for the specific network scenario leads to higher per-
formance and faster convergence (see Section 6.2). We de-
signed an algorithm that selects the top-k policies per-flow
before running the online learning process (see Section 5.2).
Secondly, Mutant runs a reinforcement learning procedure
that can quickly learn its own CC schema over time, based
on the pool of existing protocols (i.e., the CC heuristics in
the kernel). By continuously adapting and exploring different
protocols, Mutant can dynamically learn the strengths of each
protocol. For instance, it might recognize that BBR2 excels in
specific scenarios, such as when delays become particularly
high or bandwidths change abruptly, while Cubic performs
better in different conditions, for example, when packet loss
events occur. In such a way, our solution can learn to adapt
and refine its own congestion control policy over time, con-
tinually assessing and adjusting its strategies based on the
evolving network conditions and performance metrics.

3 Design and Implementation

This section details the two main components overviewed in
the previous section. First, we highlight the main challenges
that originate from the kernel components and operations
of the Protocol Manager. Then, we describe the Learning
Module with the RL-based algorithm.

3.1 Protocol Manager
Our Protocol Manager seamlessly integrates in-kernel func-
tionalities with the Linux kernel’s TCP source code. The
Mutant kernel module acts as a versatile meta-protocol for
congestion control. The kernel utilizes a modular and exten-
sible framework for implementing TCP congestion control

algorithms, with the struct tcp_congestion_ops at its core.
This structure consists of function call pointers that define an
interface for congestion control algorithms. Each function can
be seen as a handler for a specific TCP event. Examples of
events can be congestion avoidance (i.e., a congestion event
has been triggered), receipt of a TCP ACK, or the adjust-
ment of the TCP sender’s state. Each function is designed to
promptly respond to these events by executing the necessary
actions that facilitate congestion management and update the
internal state variables of the CC scheme. Each congestion
control algorithm encapsulates its functionalities within this
structure, enabling effortless pluggability into the system.

In our implementation of Mutant, we have created an in-
dependent and flexible meta-protocol. This module acts as
a wrapper for the tcp_congestion_ops of the protocols in
the pool and can dynamically plug and unplug them for live
switching. Our live switching procedure functions as follows:
when the Protocol Manager receives a new CC scheme to
select from the Learning Module, it performs two important
operations. Firstly, it stores the current state of the active
CC scheme, which can be restored if selected again later.
Secondly, it plugs the tcp_congestion_ops of the selected
CC scheme, seamlessly replacing the previous one. Each CC
scheme’s state variables are maintained over time, and they
are frozen and unfrozen when the scheme is selected. Addi-
tionally, upon every switch, the next protocol starts from the
cwnd value of the preceding one. To communicate with the
RL module in the user space, the protocol manager uses the
netlink socket family. After receiving every ACK, it sends the
network features to the Learning Module, which predicts the
CC scheme to be selected for the next step.

3.2 Learning Module

This module hosts the online learning capability using a Rein-
forcement Learning (RL) approach. In RL, an agent performs
an action, a, in a particular state, s, of an environment and
receives a reward, r, for having performed this action [46]. An
agent learns a policy to maximize its reward over time, where
such a reward value indicates how successful the agent’s ac-
tion has been. This motivates the agent to seek for a series of
state-action pairs that eventually maximizes its overall reward
via a process of exploration and exploitation, with varying
degrees.

In this work, we design an online learning algorithm based
on contextual Multi-Arm Bandits (MAB) [36]. Similar to
the more popular Q-Learning, MAB is an RL algorithm that
makes decisions under uncertainty by balancing between ex-
ploration and exploitation of several actions, known as bandits.
Simply, the algorithm observes a context, makes a decision
by selecting one action from a set of alternative actions, and
then observes the outcome of that decision. However, unlike
traditional RL, bandit problems only observe the outcome
of a selected action for a given state, and it does not have

Table 1: Raw input statistics used in the learning process. For
each feature in bold, we also compute the mean, minimum,
and maximum values across three observation windows of
different sizes: short (10), medium (200), and long (1000).

snd_cwnd Sender’s congestion window size
rtt_us Round-trip time in microseconds
srtt_us Smoothed round-trip time
mdev_us Mean deviation of round-trip time
min_rtt Minimum round-trip time
advmss Advertised maximum segment size
delivered Number of packets delivered
lost_out Rate of packets lost
in_flight Number of packets sent
retrans_out Number of retransmitted packets
rate Delivery rate
prev_proto ID of the previous protocol
crt_proto ID of the selected protocol
throughput Throughput
loss_rate Loss rate

Q-tables to look up past performances and decide the best
action to take [36]. By being simple in the learning nature,
this approach can be used to learn online among possible
choices and, thus, leads to faster adaptability to new network
conditions.
Environment. It acts as the interface through which the
agent interacts with its surroundings, offering feedback to
the agent’s actions and shaping its learning trajectory. The
environment runs in our Learning Module, which collects the
network parameters from the kernel at runtime and provides
the observation at each time step. The duration of this time in-
terval is customizable, but it impacts the switching frequency
between different congestion control (CC) schemes within the
pool. We explored various time intervals through empirical
experimentation to understand their impact on model perfor-
mance in Section 6.1.
Agent. The agent interacts with the Mutant environment by
observing states, taking actions, and receiving rewards. The
agent aims to learn the best mapping between states and
actions to maximize cumulative rewards over time. In contex-
tual MAB, the agent faces a set of actions (arms) and must
choose the next action based on observed contexts or features.
As each action yields an uncertain reward, the agent aims
to learn which action maximizes cumulative rewards given
different contexts. In multi-arm bandits algorithms, the agent
employs a policy to balance the trade-off between exploration
and exploitation. In Mutant, we implement the Upper Confi-
dence Bound [32] as the exploration-exploitation policy (see
Section 5.1).
State. In our work, we consider a diverse set of network statis-
tics from the kernel during the communication between two
hosts as our input features (Table 1). For a subset of these
features, we additionally consider three observation windows
to extract temporal dynamics varying the time granularity

across short (10 samples), medium (200 samples), and long
(1000 samples) durations. This leads to a total of 55 input
features collected at each step from the kernel. To efficiently
manage this input space, we employ a pre-trained encoder
to map these features in the latent space to achieve dimen-
sionality reduction (see Section 5.1), resulting in a total of 16
embedding input signals.
Actions. The arm or action determines what an agent ob-
serving an environment can do to influence the environment.
In our context, Mutant has the following set of actions rep-
resented as A = tcp_protoi ∀ i, where i is the index of the
CC scheme deployed on the host machine. According to the
learning agent, Mutant selects the next scheme based on the
network conditions it has seen. For every network scenario
and before the agent starts learning, we run our MPTS pro-
tocol to determine the pool of top-k schemes, given a fixed
k. However, k is a parameter of Mutant, and we designed
our solution with the aim of providing the flexibility of in-
cluding other (future) protocols in the kernel thanks to an
extensible and versatile interface 1. Our prototype tested in
this paper supports 11 different in-kernel CC schemes: Cu-
bic [25], Hybla [14], BBR2 [15], Westwood [17], Veno [24],
Vegas [13], YeAH [9], Bic [53], HTCP [33], Highspeed [23]
and Illinois [35]. Selecting the best scheme at each time inter-
val is a non-trivial problem. We discuss such a problem and
solution in Section 4.
Reward. A reward is a utility function that allows us to cal-
culate the effectiveness of the action by measuring a reward
value for an agent observing an environment. In our context,
we want our agents to maximize the network throughput while
minimizing the delay. We express this objective as an attempt
to maximize the Power metric, a well-known quantity defined
as pw = T hroughput

Delay . At the same time, we also aim to mini-
mize the number of packet losses. As such, our agents seek to
maximize their overall reward at time step t, Rt defined as:

Rt =
(thrt −ζ · lt)κ

dt
, (1)

where thrt , dt , lt are the delivery rate, average delay, and
loss rate observed at timestep t. ζ and κ are coefficients that
determine the impact of the loss rate over the throughput and
the importance of the throughput over the delay, respectively.
We compute the throughput as the delivery rate during the
communication directly in the kernel, defined as thrt =

rt
st

,
where rt is the number of packets delivered and st the time
interval in us.

4 Problem Statement: Selecting the Best Pro-
tocols to Learn From

A cooperative game is characterized by a pair (N,ν) contain-
ing a set of players N = {p1, ..., pn} and a value function

1Mutant code is publicly available at https://github.com/lorepap/
mutant

Algorithm 1: Mutant’s Online Learning Algorithm

1 Let δ represent the step duration
2 Let N denote the total number of steps
3 Let xt denote the raw network features
4 Compute top-k CC schemes via MPTS (Algorithm 2).
5 Initialize thrmax and delmin
6 for step in n_steps do
7 Predict idi
8 Switch current scheme to idi
9 while δ has not expired do

10 Read xt from kernel module
11 Compute the embeddings zt = fenc(xt)
12 Update state with zt
13 Update thrmax and delmin

14 Compute µa = θ∗T zt

15 Compute UCBa = µa +
√

2log(t)
na

16 Update MAB policy parameters

17 Rmax = thrmax/delmin

18 Rt =
(thrt−ζ·lt)κ

dt
· 1

Rmax

ν : P (N)→ IR, where ν(/0) = 0 by definition. The players can
form coalitions S ⊆ N and obtain a combined benefit given
by ν(S), which is called the worth of S.

Our problem is characterized by a set of strategies, or arms
A = {a1, ...,an} and at each discrete time step t, the learner
can pull an arm ai. To each arm i there is an associated proba-
bility distribution pi ∈ [0,1]. The observed reward for arm i
is drawn from pi. We model our congestion control protocol
set selection in Mutant as a multi-armed problem.

In particular, the resolution of the top-k arms identification
problem determines the protocols to use. The Mutant agent
selects the k arms with the highest mean rewards to form a
coalition at the end of T evaluations. In the multi-arm ban-
dit literature, the parameter T is denoted fixed budget. Such
budget is given beforehand, and once exhausted, the learner
returns its guess about the top-k arms. The learner’s perfor-
mance is hence measured by the probability of returning a
correct output. Formally, the objective of the learner is to
select the set {a1, ...,ak} corresponding to the set of arms
with the k highest mean rewards, µ1, ...,µk. In the rest of this
section, we assume that the final set of arms is ordered by
the reward, i.e., µ1 > ... > µk. This ordering assumption pre-
serves the generality, while the assumption that the means are
all distinct is made for the sake of notation (the complexity
measures differ slightly if the top k means are ambiguous).

We assess the effectiveness of the Mutant agent’s strategy
by using the probability of misidentification, i.e.:

eT = P({a1, ...,ak} ̸= {1, ...,k}). (2)

Considering the following complexity measure for the single

https://github.com/lorepap/mutant
https://github.com/lorepap/mutant

best arm identification:

H1 =
n

∑
i=0

1
∆2

i
and H2 = max

i

i
∆2

i
, (3)

where ∆i = µ1 −µi for i ̸= 1 and ∆1 = µ1 −µ2 (difference in
mean rewards). Prior work [7] showed that these two com-
plexity measures are equivalent up to a log factor, i.e.,

H2 ≤ H1 ≤ log(2n)H2. (4)

Intuitively, H1 represents a lower bound on the number of
evaluations necessary to identify the best arm. To verify if an
arm has mean µ∗ = maxi µi or µi, and agent needs to sample
1

∆2
i

times. The surprising fact shown in [7], that we reuse in our
analytical result, is that the order of H1 evaluations suffices to
identify the best arm. As for upper bounds, the quantity H2
proved to be a useful surrogate for H1 to express the bounds
on eT .

To model our k-best arms identification problem, we then
define the gaps and the complexity measures as follows:

∆
k
i =

{
µi −µk+1 if i ≤ k
µk −µi otherwise

Hk
1 =

n

∑
i=0

1
(∆k

i)
2
, Hk

2 = max
i

i
(∆k

(i))
2
,

(5)

where the notation (i) ∈ {1, ..,n} is defined such that ∆k
1 ≤

... ≤ ∆k
m. In our case, the Hk

1 replaces the H1 as the lower
bound of the k-best arms identification problem.

5 Mutant Online Learning Logic

After the team selection process, we oversee the ultimate
lineup and dynamically choose the protocol responsible for
controlling congestion. We formulate the online learning pro-
cedure in Mutant (Algorithm 1) - which changes the CC
scheme in the pool based on the real-time collection of net-
work features - as a Contextual Multi-Armed bandit prob-
lem (CMAB) [36]. Unlike the traditional multi-armed bandit
problem, where the rewards of each arm are independent of
the context, in CMAB, the reward of each arm (i.e., the CC
schemes) depends not only on the arm chosen but also on a
set of contextual features (i.e., the network parameters) asso-
ciated with the current state of the environment. Formally, at
each time step t, the agent observes a context vector xt that de-
scribes the current state of the environment and selects an arm
i based on a policy π(xt). The policy maps each context vec-
tor to a probability distribution over the arms, indicating the
likelihood of selecting each arm given the context. The agent
then receives a reward rt,i associated with the chosen arm.

To address this trade-off problem, we leveraged the Linear
Upper-Confidence Bound policy, which we combine with
an algorithm to preliminary select the policies in the pool

(Section 5.2). We design our algorithm as a cooperative
game. Unlike competitive games, where players compete to
maximize an often selfish utility, cooperative games foster
teamwork and coordination among participants [41]. In our
system, all players (protocols) aim to reach “high throughput
and low delay” for all flows. An intriguing question in the
context of cooperative games concerns the importance of
a single player’s contribution. In particular, one crucial
question is: What are the top players performing in this game?

5.1 Challenges to Achieve an Online Learner

Exploration vs. Exploitation Trade-Off. One main chal-
lenge in online RL is balancing the trade-off between explo-
ration, i.e., trying out new actions or strategies to gather in-
formation about the environment, and exploitation, i.e., lever-
aging known information to maximize short-term rewards.
While too much exploration may lead to sub-optimal perfor-
mance, excessive exploitation can result in missed opportuni-
ties for discovering better solutions, given the uncertainty sur-
rounding the efficacy of the chosen protocol and the varying
network conditions. This difficulty arises because achieving
quick and cost-effective convergence becomes impractical
without investing significant time and resources. As an online
RL approach, our model must minimize the exploration time
and ensure consistently good performance by selecting the
best-performing protocol for the underlying network settings.

The key challenge in the CMAB problem is to learn an
effective policy that balances the exploration of different arms
with the exploitation of arms that are likely to yield high re-
wards, considering the contextual information. To this end,
we use the LinUCB (Linear Upper Confidence Bound) al-
gorithm [34], which extends the classic Upper Confidence
Bound algorithm [8] to the contextual setting.

LinUCB assumes a linear relationship between the ex-
pected reward of an arm and associated contextual informa-
tion. Specifically, the expected reward for pulling arm a at
round t, given a context feature vector xt with dimensionality
d, can be expressed as µa = θ∗T xt , where θ∗T captures the
weights associated with each feature. However, since we do
not have direct access to θ∗, LinUCB employs an estimate
θ̂t ∈ Rd that is updated over time based on observations. Our
approach entails Bayesian linear regression [12] to model
such a relationship between the contextual features and the
expected rewards for each action, thus forecasting the weights
θ∗T . This linear relaxation simplifies the traditional RL pro-
cess, making the learning policy a more lightweight process
suitable for our purpose of learning online.

In addition to predicting the reward, LinUCB computes an
upper confidence bound (UCB) for each action’s expected re-
ward. This bound represents a trade-off between the estimated
mean reward and the uncertainty in that estimate. In conclu-
sion, by selecting actions with higher UCB values, LinUCB
can balance exploration (selecting actions with uncertain re-

wards) and exploitation (selecting actions with potentially
high rewards), aiming to maximize cumulative rewards over
time.
Reduce the Input Representation. From the raw network
features indicated in Table 1, we compute maximum, mini-
mum, and mean values for some metrics over short, medium,
and long-size sliding windows. While this approach allows to
extract temporal dynamics at runtime, it also leads to a total
of 55 different network features. Such a large state space is
hardly managed by LinUCB, which approximate a linear rela-
tionship between the context (i.e., network features) and the
reward of each arm (i.e., the protocols in the pool). If, on the
one hand, such a linear algorithm enables a more lightweight
policy, on the other hand, this simplistic assumption poses
new challenges as it needs more representational power, espe-
cially with a large context vector.
Inspired by [40], to overcome this limitation, we design an
encoder network to represent a large network feature vec-
tor into a smaller latent space. On top of that, this operation
should be done in an online fashion. At each step, the high-
dimensional raw observation xt is processed by a pre-trained
encoder that outputs the low-dimensional embeddings zt . We
use a Gated-Recurrent Unit [18] layer with two fully con-
nected (FC) layers as our encoding network architecture to
capture the sequence-level information from the online net-
work data. Thus, the expected reward for each arm becomes
µa = θ∗T zt , where zt is the output of the last hidden layer of
the encoding network for the context xt .
Dynamic Reward Normalization. Since the reward defined
in Equation 1 captures the ratio between the throughput and
the round-trip time, as the bandwidth can change over time,
the most-rewarded protocol can change accordingly. Because
of this, we need to normalize the reward according to the
maximum achievable reward for the particular network set-
ting. We adopt an online change detection algorithm based on
ADWIN [11]. This algorithm can detect the throughput and
the round-trip time shifts during the communication for each
selected CC scheme. Every time a change is detected, we
recalculate the maximum reward by replacing the throughput
and round-trip time values in Equation 1 with each adap-
tive window’s maximum throughput and minimum round-trip
time. This approach ensures that the normalized reward re-
flects the best-performing CC scheme at each step, even when
the underlying network setting changes.

5.2 Top-k selection with MPTS

We present an algorithm — Mutant Protocol Team Selection
(MPTS) – to find the best CC algorithms to learn from, and we
show that such an algorithm has a bounded error. Before pro-
ceeding, we introduce the following notation. For each arm
i and for all rounds t ≥ 1, we have Wi(t) = ∑

t
s=11It=1 to be

the number of times arm i was pulled from rounds 1 to t, and
Xi,1,Xi,2, ...,Xi,Wi(t) the sequence of associated rewards. Then,

Algorithm 2: Mutant Protocol Team Selection
(MPTS) algorithm for k-best protocol identification.

19 Let A1 = {a1, ...,an},k(1) = k,n0 = 0,
log(T) = 1

2 +∑
T
i=2

1
i , and for j ∈ {1, ...,n−1}

n j = [1
log(T)

T−n
n+1− j];

20 Initialize ;
21 for each phase j ∈ {1, ...,n−1} do
22 1. For each active arm ai ∈ A j select arm ai for

n j −n j−1 ;
23 2. Let σ j : {1, ...,n+1− j}→ A j be the bijection

that orders the empirical means by
µ̂σ j(1),n j ≥ µ̂σ j(2),n j ≥ ...≥ µ̂σ j(n+1− j),n j . For
1 ≤ r ≤ n+1− j, we have these empirical gaps
∆̂σ j(r),n j ={

µ̂σ j(r),n j − µ̂σ j(k(j)+1),n j if r ≤ k(j)
µ̂σ j(k(j)),n j − µ̂σ j(r),n j if r ≥ k(j)+1

;

24 3. Let i j ∈ argmax∆̂i,n j and ties are broken
arbitrarily. Deactivate arm ai j and
A j+1 = A j\{ai j} ;

25 4. If µ̂i j ,n j > µ̂σ j(k(j)+1),n j , then arm ai j is accepted,
i.e., k(j+1) = k(j)−1 and ak−k(j+1) = i j ;

26 return the k accepted arms a1, ...,ak;

let µ̂i,s =
1
s ∑

s
t=1 Xi,t the empirical mean of arm i after s evalu-

ations and Xi,s(k) and µ̂i,s(k) the corresponding quantities in
the multi-bandit problem.

The concept behind MPTS is similar to Successive Rejects,
which was developed to address the single best arm identifica-
tion problem [7]. However, MPTS has the additional feature
of occasionally accepting an arm if it can be conclusively
shown to be one of the top k arms.

Informally MPTS evolves following these steps. The time
(the T rounds) is first divided into K −1 phases. At the end
of each phase, the algorithm either accepts the protocol (arm)
with the highest empirical mean or dismisses the protocol
with the lowest empirical mean. In any of these two cases, the
corresponding protocol is deactivated. During the following
phase, it pulls each active protocol with the same frequency.
During a specific phase j, the key to choosing whether to
accept or reject is to rely on estimates for the gaps ∆k

i .
Assuming, for example, that the algorithm has already ac-

cepted k − k(j) protocols, a1, ...,ak−k(j), it means that k(j)
must be still found. At the end of the phase j, MPTS com-
putes for the k(j) empirical best arms (among the active arms)
the distance in terms of empirical mean to the (k(j)+1)th em-
pirical best arm among the active arms. For the active arms not
among the k(j) empirical best arms, instead, MPTS computes
the distance to the k(j)th empirical best arm. MPTS deacti-
vates the arm i j that maximizes these empirical distances. If
i j is the currently best (empirically) arm, it is accepted and

102030405060
Avg. One-way Delay (ms)

0

1

2

3

4

5

6

7

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

Cubic
BBR2
Hybla
Westwood

Veno
Vegas
YeAH
Bic

HTCP
Highspeed
Illinois
Mutant

(a) cellular link 1 (AT&T LTE)

3035404550
Avg. One-way Delay (ms)

10.0

10.5

11.0

11.5

12.0

12.5

13.0

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)
(b) cellular link 2 (T-Mobile LTE)

3035404550
Avg. One-way Delay (ms)

7

8

9

10

11

12

13

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

(c) cellular link 3 (Verizon LTE)

2030405060
Avg. One-way Delay (ms)

200

250

300

350

400

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

Cubic
BBR2
Hybla
Westwood
Veno
Vegas

YeAH
Bic
HTCP
Highspeed
Illinois
Mutant

(d) 5G cellular 1 (Beach Stationary)

20406080100120
Avg. One-way Delay (ms)

200

300

400

500

600

700

800
Av

g.
 T

hr
ou

gh
pu

t (
M

bp
s)

(e) 5G cellular 2 (Beach Stationary 2)

30405060
Avg. One-way Delay (ms)

450

500

550

600

650

700

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

(f) 5G cellular 3 (Park Stationary)

202530354045505560
Avg. One-way Delay (ms)

0

1

2

3

4

5

6

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

Cubic
Hybla
BBR2
Westwood

Veno
Vegas
YeAH
Bic

HTCP
Highspeed
Illinois
Mutant

(g) wired 1 (Low Bandwidth)

100110120130140
Avg. One-way Delay (ms)

9.0

9.5

10.0

10.5

11.0

11.5

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

(h) wired 2 (Step with large queue)

85.087.590.092.595.097.5100.0
Avg. One-way Delay (ms)

9.0

9.5

10.0

10.5

11.0
Av

g.
 T

hr
ou

gh
pu

t (
M

bp
s)

(i) wired 3 (High RTT)

Figure 4: Average throughput and one-way delay over different emulated network environments.

variables are updated as k(j+ 1) = k(j)− 1, ak−k(j+1) = i j.
Otherwise, the arm i j is rejected. The formal description of
MPTS is reported in Algorithm 2. We now show that the error
probability of MPTS is bounded, with the following Theorem.

Theorem 5.1. Let n be the number of available protocols, T
the number of evaluations, and Hk

2 the complexity measure
defined in Equation 5. The error probability of the MPTS
algorithm in the k-best protocol identification problem has
the following error bound:

eT ≤ 2n2 exp
(
− T −n

8log(T)Hk
2

)
. (6)

Proof. See appendix.

6 Performance Evaluation

In what follows, we describe Mutant general evaluation us-
ing simulated and real-world traffic. In particular, in Sec-
tion 6.1, we give details about the environments used for our
experiments. In Section 6.2, we present Mutant’s performance
and compare them to state-of-art ML-based schemes. In Sec-
tion 6.3, we analyze the importance of selecting the best-k
protocols in the pool. We elaborate more about Mutant’s fair-
ness in Section 6.4. Finally, in Section 6.5 we present an

0 5 10 15 20 25 30
Time (s)

0.0

2.5

5.0

7.5

10.0

Se
nd

in
g

R
at

e
(M

bp
s) Capacity Mutant Cubic

Figure 5: Mutant quickly adapts to highly variable network
conditions compared to Cubic, the default congestion control
in most Linux implementations. An optimal protocol would
follow exactly the available capacity.

ablation study on Mutant’s main components.

6.1 Evaluation Settings
Across our experiments, we test our protocol on publicly avail-
able realistic network conditions [2, 6, 37] to emulate cellular
links even high bandwidths. Additionally, we consider a com-
bination of emulated wired network scenarios, i.e., a typical
Internet network environment consisting of a fixed bandwidth,
delay, and queue size. We range the bandwidth, minimum rtt,
and buffer queue size values within [12, 96] Mbps, [10, 120]
ms, and [1, 20] × BDP, respectively.

We collect the performance of other CC baselines using
Pantheon testbed [54] and Mahimahi emulator [37]. An ex-
periment involves establishing an iperf3 session between
a single client and a Linux-based host machine. This setup
allows us to capture and analyze various network metrics and
evaluate the performance of different congestion control algo-
rithms in a controlled experimental environment. For our real-
world scenarios, we test Mutant on (i) intra-continental and
(i) inter-continental network environments using Fabric [10]
testbed. In our experimental setup, we establish the default
quantity of kernel protocols within the pool, denoted as k, to
be 6. This decision followed a comprehensive evaluation via a
greedy search approach, as detailed in Section 6.3. Addition-
ally, we set δ = 10−2s, i.e., the interval for alternation among
CC schemes, (see Section 6.5).

6.2 Throughput-Delay Performance
In our experiments we compared Mutant with the following
baseline, divided into four categories: (i) end-to-end TCP de-
signs, e.g., Cubic [25], Vegas [13], Hybla [14] and the schemes
in the pool, PCC [21], Copa [5]; (ii) end-to-end cellular, i.e.,
LTE protocols, e.g., C2TCP [1], Sprout [51]; (iii) ML-based
protocols, such as Owl [43], Indigo [54], Orca [2], Sage [55],
Antelope [56], and (iv) mixed schemes, e.g., LEDBAT [45].
Figure 4 shows the average throughput and delay across the
cellular and wired sets of experiments, where the shaded el-
lipses represent the standard deviation across experiments
from the mean value (i.e., the center of the ellipses). In partic-

1.251.501.752.002.252.50
Avg. Norm. Delay

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t

Orca
Antelope
Sage
Cubic
Vegas
BBR2
Hybla
PCC

Copa
C2TCP
Sprout
Owl
Indigo
LEDBAT
Mutant

(a) Intra-Continental

1.001.051.101.151.20
Avg. Norm. Delay

0.0

0.2

0.4

0.6

0.8

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t

(b) Inter-Continental

Figure 6: Average normalized throughput, average normal-
ized delay and 95th percentile (end of lines) on real-world
experiments.

ular, the step scenario (Figure 4h) is obtained by doubling the
bandwidth after a defined time period. We compare Mutant
against the pool of schemes it learns from. We select differ-
ent emulated network environments for wired and cellular
experiments and run each protocol for 2 minutes. We selected
a diverse set of network scenarios with different ranges of
bandwidth, from low (i.e., LTE and wired), to high2 (i.e., 5G
cellular). For each environment, we preliminary compute the
protocols in the pool by running MPTS with T = 100, then
running Mutant with the resulting pool. Results prove that
Mutant is consistently among the best protocols across all
tested scenarios and learns how to adapt to the specific en-
vironment. Somehow surprisingly, these findings show that
Mutant does not depend on the best-performing protocol but
can learn its policy by switching among the protocols pool
and adapting quickly to the network scenario to maximize its
reward. Indeed, Mutant can learn from the pool of protocols
and outperform them. In Figure 5, we present how Mutant’s
best-k setting can quickly adapt to changing network condi-
tions, while Cubic clearly shows the inability to achieve full
link utilization. This shows that Mutant learns to select the
protocols based on when they perform at their best over time,
even in highly variable network scenarios. We explore further
the reward suboptimality in Appendix B.

We then validate Mutant on real-world network environ-
ments. We consider intra-continental and inter-continental
experiments by setting up different hosts across the US and
Europe using Fabric testbed [10]. To make a fair compari-
son with the ML baselines, we preliminary run the MPTS
algorithm for the top-k protocols on every scenario. For each
baseline, we run one flow for 30 seconds and repeat the ex-
periment 10 times. As demonstrated in Figure 6, Mutant con-
sistently achieves high performance levels when compared to
other baselines. Most notably, Mutant can surprisingly match
or even outperform pre-trained ML-based congestion control
protocols (such as Orca, Sage, Antelope, and Indigo), even
without extensive offline training. Mutant can also outper-
form online learning schemes, such as PCC, which show a
competitive delay but a low throughput. We also highlight

2Due to Mahimahi limitations on traces with bandwidths larger than
∼ 200 Mbps, we leveraged a modified version of Mahimahi [6] to test Mutant
on real 5G cellular traces with high bandwidth.

0.0 2.5 5.0 7.5 10.0 12.5
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Capacity
k=2
k=4
k=6
k=8
k=10

Figure 7: CDF of the
throughput over a cellular
link varying k.

1 2 3 4 5 6 7 8 9 10 11
No. of schemes in the pool

0

20

40

60

80

B
es

t R
ew

ar
d

R
at

e
(%

)

20.21

30.42

50.61

60.37
65.58

70.65

50.27
55.5454.28

45.9843.42

Figure 8: Mutant’s performance
varying the number of protocols
in the pool (k).

that Mutant is capable of achieving competitive performance
even within a short duration of the flow transmission. Overall,
Mutant shows a 3.85% lower delay than BBR2 (appearing as
the best-performing protocol in the pool) and a 3.60% lower
delay than the average delay of other machine learning-based
solutions like Sage, Orca, Indigo, and Antelope. Notably, it
can achieve this result while maintaining a high throughput.
This analysis yields an important result: it is possible to learn
from a pool of protocols in an online fashion and achieve
competitive performance compared to offline ML algorithms.

6.3 MPTS: Top-k Evaluation
To identify the optimal k for our Mutant Congestion Control
protocol, we employ our MPTS Algorithm 2 while varying
the number of protocol k in the pool, which also defines the
action space in the RL model. Empirically, we observe that
the inclusion or exclusion of certain protocols significantly
influences the performance of the model, leading to either
performance improvement or deterioration. Consequently, it is
crucial to determine the best-performing configuration, where
the k-size “team” in the algorithm effectively represents the
protocols that positively contribute to the overall performance
of Mutant.

We run an experiment to empirically find the value of k
to be set for each network scenario. We run MPTS for a
total of T = 100 rounds, varying k between 2 and 11. During
each round of the MPTS algorithm, the available protocols
are selected based on a uniform distribution. This selection
process ensures that each protocol has an equal chance of
being evaluated. Upon completing the T total rounds of the
MPTS algorithm, we compute the best k protocols based
on their cumulative mean reward, as defined in Equation 1.
Intuitively, the higher the number of protocols in the pool, the
more time Mutant must explore to find the best protocol at
a given step of the algorithm. We evaluate how the number
of protocols in the pool impacts the performance of Mutant
on a cellular link in terms of throughput over time, reporting
results in Figure 7. While it benefits the exploration of more
protocols, we found that with more than k = 8, performance
degrades without improving, even with more time to explore.

We then test each resulting configuration across all network
scenarios and collect the average throughput and delay. We

Env 0 Env 1 Env 2 Env 3 Env 4 Env 50.0

0.2

0.5

0.8

1.0

Av
g.

 N
or

m
. R

ew
ar

d MPTS Random Mixed

Figure 9: Impact of different protocol selection strategies.

present the overall performance in Figure 8 in terms of best
reward rate, namely the number of times Mutant results in the
top 10% of the best-performing protocols for a given network
environment.

Finally, to underline the importance of selecting the best-k
protocol preliminary (via MPTS), we run the following ex-
periment: we consider six different network environments
sampled from the sets in Section 6.1, and three protocol selec-
tion strategies: (i) MPTS with k = 6, (ii) a random selection
of k = 6 initial CC schemes and (iii) a mixed selection of CC
schemes for each of the following categories: delay-based
(Vegas, BBR2), loss-based (Cubic, Westwood), hybrid (Illi-
nois) and specialized (Highspeed, Hybla). Subsequently, we
run Mutant with the resulting pool of CC schemes for each
selection strategy for 2 minutes on the six network scenar-
ios. In Figure 9, we present the average normalized reward
(Equation 1) for the three selection strategies. Interestingly,
the selection of the initial pool of schemes significantly im-
pacts the performance of our model. When a diverse set of
CC schemes (i.e., protocols of different natures) is considered,
Mutant shows a degradation of performance. The takeaway
message is that the efficacy of Mutant is significantly enhanced
by an adequate selection of the starting protocols for the spe-
cific network environment, and our MPTS algorithm enables
consistently high performance across the test scenarios.

6.4 Fairness and Harm Analysis
In this section, we evaluate the harm [50] that a Mutant
flow, α, causes another flow, β, considered as another con-
gestion control algorithm, e.g., Cubic. As mentioned by Ware
et al. [50], harm instead of fairness is a better performance
metric. If the amount of harm caused by flows using a new
algorithm γ on flows using an algorithm ω is within a bound
derived from how much harm ω flows cause other ω flows,
we can consider γ deployable alongside ω. Therefore, we use
this metric to show that Mutant can be deployed to real-world
systems.

Harm, unlike fairness, takes into account that different
flows can have different demands. As such, for example, a new
CC scheme γ competing against a Reno flow on a 10Gbps link
would not be flagged as unfair because it took advantage of the
remainder of the link capacity due to the well-known Reno’s
slow additive increase and aggressive reaction to loss [26],
which prevents Reno from fully utilizing the link. Also, it is

Cubic BBR2 Hybla Vegas Mutant0

2

4

6

8

10

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

ht = 0.280
ht = 0.258 ht = 0.094

ht = 0.310
ht = 0.135

Solo
vs. Mutant

(a) Throughput.

Cubic BBR2 Hybla Vegas Mutant0

10

20

30

40

Av
g.

 D
el

ay
 (m

s)

hd = 0.016
hd = 0.033hd = 0.097hd = 0.062hd = 0.015

Solo
vs. Mutant

(b) Delay.

Figure 10: Mutant’s harm [50] to other protocols and self-
harm (right-most bars) is consistently low, meaning that the
protocol fairness and friendliness are high when competing
with other protocols or against other Mutant instances.

multi-metric. It is not based solely on throughput unlike Jain’s
Fairness Index (JFI) [27]. On the contrary, it also considers
performance metrics like latency, flow completion time, etc.

Much like fairness, harm ranges from [0 - 1] where 1 is
maximally harmful and 0 is harmless. We use the following
equations to calculate the harm, h, caused by Mutant’s on
another CC scheme. For metrics where “more is better” (like
throughput), we use ht =

x−y
x , where x is the solo performance

of β without α and y is the performance of β after the intro-
duction of α. While for metrics where “less is better” (like
latency or loss), we use hd = y−x

y to calculate harm.
We evaluated the harm of Mutant when competing with

other flows. In Figure 10, we report the performance in terms
of throughput and delay, where Mutant is used in competition
with different CCAs. We also assess the protocol’s self-harm.
In particular, we tested some protocols in Mutant’s pool on an
emulated cellular link. First, we run each CC scheme individ-
ually in a single-flow scenario (i.e., without interference from
Mutant’s flow). Then, we run Mutant concurrently with a flow
using a different CC scheme to observe their competition.
Our results reveal that Mutant is friendly (i.e., causes minimal
harm) to all the other protocols, with a negligible influence on
the flows of other protocols, by just looking at the ht and hd
values. From these experiments, we can see how, in addition
to being friendly, Mutant also has high self-fairness i.e., it
minimally harms other Mutant instances.

Additionally, we provide a sample of the Mutant’s behavior
when competing with a Cubic’s flow in Figure 11 on a cellular
link. It is worth noticing how Mutant learns to adapt to the new
flow and converge to a fair share over time. This is due to the
fact that even though Equation 1 does not explicitly include a
fairness term, Mutant has the capability to penalize any unfair
protocol behavior and promptly switch to an alternative one in
response to a sudden surge in packet loss - which is accounted
for in the formulation. Over time, Mutant converges to the
fair share of the link capacity to maximize the reward.

6.5 Ablation Study
In this section, we validate some of the main Mutant’s com-
ponents and their impact on its overall behavior. First, as
Mutant’s switching logic is a core feature of the system, we

0 50 100 150 200
Time (s)

0.0
2.5
5.0
7.5

10.0
12.5

Th
ro

ug
hp

ut
 (M

bp
s)

Mutant

Figure 11: Friendliness com-
peting with a Cubic flow.

10 4 10 3 10 2 10 1 0.5 1
Step duration (s)

0

20

40

60

B
es

t R
ew

ar
d

R
at

e
(%

)

14.12%

35.15%

56.34%
51.74%

21.31%
12.92%

Figure 12: Impact of the step
duration δ.

Mutant
Mutant-STATIC

Raw-ALL
Raw-STATIC

0
10
20
30
40
50

B
es

t R
ew

ar
d

R
at

e
(%

) Single-Flow
Multi-Flow

Figure 13: Impact of different
groups of input features.

Dimension 1

D
im

en
si

on
 2

Env 1
Env 2
Env 3
Env 4
Env 5
Env 6

Figure 14: t-SNE [49]
of the embeddings ex-
tracted from the last
layer of the encoder.

study the impact of different values of δ (i.e., the switching
frequency). Second, we evaluate the importance of input fea-
tures in the online learning process. In particular, we validate
the impact of mapping the network features into the latent
space. Third, we study the encoder’s ability to identify differ-
ent network conditions.
Impact of switching frequency. We start analyzing the per-
formance of different values of the step duration δ, i.e. the
time interval a CC scheme in the pool runs before the next ac-
tion of the RL algorithm is performed. We report in Figure 12
the best reward rate across all our network test environments
- i.e., the number of times Mutant results in the top 10% of
the best-performing protocols for a given environment. As
emerging from the graph, Mutant benefits from high-frequency
transitions between schemes in the pool, instead of selecting
a single protocol for extended duration.
Input Features. To evaluate the effect of different input fea-
ture strategies, we run an experiment for single and multi-flow
environments to examine the following input feature con-
figurations: Mutant-STATIC, Raw-ALL, and Raw-STATIC.
Mutant-STATIC excludes all mean, minimum, and maximum
statistics from the input feature set. Raw-ALL removes the en-
coder from Mutant’s workflow and directly feeds the network
features into the learning model. Raw-STATIC eliminates
both the encoder and the mean, minimum, and maximum
statistics. Figure 13 exhibits that Mutant benefits from input
features represented in the latent space. These results also
reflect Mutant’s behavior when only a partial set of features
is input to the encoder: indeed, without any historical infor-
mation given by the different observation windows, there is a
clear performance degradation.
Quality of the embeddings. We present a t-Distributed
Stochastic Neighbor Embedding (t-SNE) [49] analysis (a

popular technique employed to visualize high-dimensional
data) to validate further the importance of encoding the input
network features in Mutant. Figure 14 shows such a two-
dimensional t-SNE representation of the embeddings in six
random network scenarios sampled from the test set indicated
in Section 6.1. This visualization highlights that our encoder
sharply separates different network scenarios in the latent
space, helping Mutant detect diversities among states.

7 Related Work

The problem of congestion control has been extensively dis-
cussed in the literature, given its importance for reliable data
transmissions. While congestion control has been a popular
research topic for over 30 years, new recent solutions have
employed machine learning-based algorithms to overcome
the limitations of traditional approaches. In the following, we
describe how machine learning (ML) has been helpful and
how we differ from these recent solutions.

Since TCP congestion control is a fundamental service,
it is not surprising that significant improvements and varia-
tions have been proposed over the years. Among them, we
can mention TCP Vegas [13], Fast [30], BBR [15], and Com-
pound [47]. Several other protocols focus on data centers, e.g.
Data Center TCP (DCTCP) [3], but those are not the focus
of our approaches. Data centers have been recently departing
from TPC-based solutions, moving towards service meshes.
Past congestion control protocols have been classified ac-
cording to the metric they consider. Delay-based protocols
consider rtt and/or average delivery rate measurements to de-
cide how fast data should be sent over the network. BBR [15],
e.g., belongs to such class and is considered to be resistant to
the bufferbloat problem, but it frequently exceeds the link ca-
pacity, causing excessive queuing delays. On the other hand,
loss-based protocols rely on indications of lost packets, and
most of the traditional approaches, e.g., Compound [47] and
Cubic [25], rely on some predefined functions or rules to
handle network conditions.

However, all these solutions are limited by their nature of
fixed-rule strategies, and their performance is limited in net-
works that require rapid adaptations. To address this problem,
a plethora of online learning congestion control protocols
have appeared, e.g., Remy [52], Performance-oriented Con-
gestion Control (PCC) [21], PCC-Vivace [22], Copa [5]. After
defining an objective function to be optimized, the process
consists of learning the best actions to take either periodically
or upon receiving ACKs.

This learning process can be further optimized by the ad-
vances in ML, and in particular in reinforcement learning
(RL). RL has permeated many congestion control mecha-
nisms, such as Orca [2], Owl [43], SPINE [48], and Au-
rora [28]. While Aurora is built upon the previous PCC
protocol and then extended with a Deep-RL approach, Owl
and Orca extend the Cubic implementation by adding an RL

learning model that can work even in unexplored conditions.
SPINE, instead, follows the additive-increase/ multiplicative-
decrease (AIMD) approach of Cubic, but the parameters of
the increment and decrement are the output of the RL model.
As these papers, our protocol also leverages past solutions
to combine the classical approach with advanced DRL tech-
niques, but with a novel twist. Prior learning solutions suffer
from design suboptimalities. If, on the one hand, delay-based
protocols cannot avoid starvation, an extreme form of unfair-
ness, in paths with excessive delay variations [4], loss-based
ones suffer the bufferbloat problems. To solve this tussle,
we bank on the idea there is no one-size-fits-all protocol, as
learned from decades of designing congestion control pro-
tocols. Our design is based on the notion of learning from
existing protocols, and predicting which protocol (set) would
perform best in future seen network and congestion scenarios.

The idea of switching among available CCs has been
floated before [38, 55, 56]. With them, we share the idea of
learning from existing protocols; however, we differ in several
ways from these solutions. Firstly, Mutant is not reliant on a
data-driven offline procedure, meaning that its learned conges-
tion control policy can adjust to different network conditions
over time. Secondly, Mutant can adapt quickly to changes in
the network environment with minimal offline adaptations, as
its main functions run online. Finally, Mutant can smoothly
transition between different CC protocols in the kernel space,
regardless of the flow duration, while preserving past TCP
information and states for each protocol during the change.

8 Conclusion
In this paper, we presented the design, implementation, and
evaluation of Mutant, a congestion control scheme that learns
from a pool of existing congestion control algorithms online.
Mutant’s online learning algorithm understands which current
state-of-the-art congestion control algorithm can perform well
in the near future. Our evaluation shows that our solution can
adapt to different network congestion scenarios efficiently if
it has the correct pool of CC schemes to learn from. Perhaps
surprisingly, we found that more knowledge in terms of pro-
tocol choices may hurt performance, given the explorative
nature of the protocol. Mutant obtained high throughput and
low delays more consistently than our benchmark CC pro-
tocols across different network conditions. Additionally, we
evaluated Mutant fairness by measuring the harm index. Our
results confirmed that Mutant is fair and causes negligent
harm and self-harm to other flows.

Acknowledgment

This work has been supported by NSF awards #2201536 and
#2133407. We would like to thank Princewill Okorie for his
initial work on this project, our shepherd Dr. Yasir Zaki, the
anonymous reviewers, and Dr. Gianni Antichi for his feedback
on a preliminary version of this manuscript.

References

[1] Soheil Abbasloo, Tong Li, Yang Xu, and H Jonathan
Chao. Cellular controlled delay tcp (c2tcp). In 2018
IFIP Networking Conference (IFIP Networking) and
Workshops, pages 118–126. IEEE, 2018.

[2] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao.
Classic meets modern: A pragmatic learning-based con-
gestion control for the internet. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’20), page 632–647,
2020.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM ’10), page 63–74, 2010.

[4] Venkat Arun, Mohammad Alizadeh, and Hari Balakr-
ishnan. Starvation in end-to-end congestion control.
In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM ’22), pages 177–192, 2022.

[5] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 329–342, 2018.

[6] Rohail Asim, Muhammad Khan, Luis Diez, Shiva Iyer,
Ramon Aguero, Lakshmi Subramanian, and Yasir Zaki.
ZEUS: An Experimental Toolkit for Evaluating Con-
gestion Control Algorithms in 5G Environments. arXiv
preprint arXiv:2208.13985, 2022.

[7] Jean-Yves Audibert, Sébastien Bubeck, and Rémi
Munos. Best arm identification in multi-armed ban-
dits. In Proceedings of the 23rd Annual Conference on
Learning Theory (COLT), pages 41–53, 2010.

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47:235–256, 2002.

[9] Andrea Baiocchi, Angelo P Castellani, Francesco
Vacirca, et al. Yeah-tcp: yet another highspeed tcp. In
Proc. PFLDnet, volume 7, pages 37–42, 2007.

[10] Ilya Baldin, Anita Nikolich, James Griffioen, Indermo-
han Inder S Monga, Kuang-Ching Wang, Tom Lehman,
and Paul Ruth. FABRIC: A national-scale pro-
grammable experimental network infrastructure. IEEE
Internet Computing, 23(6):38–47, 2019.

[11] Albert Bifet and Ricard Gavalda. Learning from time-
changing data with adaptive windowing. In Proceedings
of the 2007 SIAM international conference on data min-
ing, pages 443–448. SIAM, 2007.

[12] Christopher M Bishop. Pattern recognition and machine
learning. Springer google schola, 2:645–678, 2006.

[13] Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas:
End to end congestion avoidance on a global internet.
IEEE Journal on selected Areas in communications,
13(8):1465–1480, 1995.

[14] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp
enhancement for heterogeneous networks. International
Journal of Satellite Communications and Networking,
22(5):547–566, 2004.

[15] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based Congestion Control. Queue, 14(5):20–
53, 2016.

[16] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, So-
heil Hassas Yeganeh, and Van Jacobson. TCP BBR
v2 Alpha/Preview Release. https://github.com/
google/bbr/blob/v2alpha/README.md, 2019.

[17] Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y
Sanadidi, and Ren Wang. Tcp westwood: end-to-end
congestion control for wired/wireless networks. Wire-
less Networks, 8:467–479, 2002.

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. Empirical evaluation of gated re-
current neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[19] Shay B. Cohen, Gideon Dror, and Eytan Ruppin. Feature
selection via coalitional game theory. Neural Computa-
tion, 19:1939–1961, 2007.

[20] Zihan Ding. Imitation learning. In Shanghang Zhang
Hao Dong, Zihan Ding, editor, Deep Reinforcement
Learning: Fundamentals, Research, and Applications,
chapter 8, pages 273–306. Springer Nature, 2020.

[21] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten God-
frey, and Michael Schapira. Pcc: Re-architecting con-
gestion control for consistent high performance. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 395–408, Oakland,
CA, 2015.

[22] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
Pcc vivace: Online-learning congestion control. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 343–356, 2018.

https://github.com/google/bbr/blob/v2alpha/README.md
https://github.com/google/bbr/blob/v2alpha/README.md

[23] Sally Floyd. Highspeed tcp for large congestion win-
dows. Technical report, 2003.

[24] Cheng Peng Fu and Soung C Liew. Tcp veno: Tcp
enhancement for transmission over wireless access net-
works. IEEE Journal on selected areas in communica-
tions, 21(2):216–228, 2003.

[25] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[26] Janey C Hoe. Improving the start-up behavior of a con-
gestion control scheme for tcp. ACM SIGCOMM Com-
puter Communication Review, 26(4):270–280, 1996.

[27] Raj Jain, Dah-Ming Chiu, and W. Hawe. A quanti-
tative measure of fairness and discrimination for re-
source allocation in shared computer systems. CoRR,
cs.NI/9809099, 1998.

[28] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. A deep reinforcement learn-
ing perspective on internet congestion control. In
Proceedings of the 36th International Conference on
Machine Learning (ICML), pages 3050–3059. PMLR,
2019.

[29] Huiling Jiang, Qing Li, Yong Jiang, GengBiao Shen,
Richard Sinnott, Chen Tian, and Mingwei Xu. When ma-
chine learning meets congestion control: A survey and
comparison. Computer Networks, 192:108033, 2021.

[30] Cheng Jin, David X Wei, and Steven H Low. FAST TCP:
motivation, architecture, algorithms, performance. In
IEEE INFOCOM 2004, volume 4. IEEE, 2004.

[31] Mehdi Kargar and Aijun An. Discovering Top-k Teams
of Experts with/without a Leader in Social Networks. In
Proceedings of the 20th ACM International Conference
on Information and Knowledge Management (CIKM

’11), pages 985–994. ACM, 2011.

[32] Emilie Kaufmann, Olivier Cappé, and Aurélien Gariv-
ier. On bayesian upper confidence bounds for bandit
problems. In Artificial intelligence and statistics, pages
592–600. PMLR, 2012.

[33] Douglas Leith. H-TCP protocol for High-speed Long
Distance Networks. In Proc. International Workshop on
Protocols for Fast Long-Distance Networks (PFLDnet
’04), 2004.

[34] Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In Proceedings of
the 19th international conference on World wide web,
pages 661–670, 2010.

[35] Shao Liu, Tamer Başar, and Ravi Srikant. Tcp-illinois:
A loss and delay-based congestion control algorithm for
high-speed networks. In Proceedings of the 1st interna-
tional conference on Performance evaluation methodol-
gies and tools, pages 55–es, 2006.

[36] Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-
armed bandits. In Proceedings of the Thirteenth interna-
tional conference on Artificial Intelligence and Statistics,
pages 485–492. PMLR, 2010.

[37] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for http. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 417–429, 2015.

[38] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen,
Kaixin Sui, Jiyang Zhang, Zijie Ye, and Dan Pei. Dy-
namic TCP Initial Windows and Congestion Control
Schemes Through Reinforcement Learning. IEEE Jour-
nal on Selected Areas in Communications, 37(6):1231–
1247, 2019.

[39] Zhiyuan Pan, Jianer Zhou, XinYi Qiu, Weichao Li, Heng
Pan, and Wei Zhang. Marten: A built-in security drl-
based congestion control framework by polishing the
expert. In IEEE INFOCOM 2023-IEEE Conference on
Computer Communications, 2023.

[40] Carlos Riquelme, George Tucker, and Jasper Snoek.
Deep bayesian bandits showdown: An empirical compar-
ison of bayesian deep networks for thompson sampling.
arXiv preprint arXiv:1802.09127, 2018.

[41] Walid Saad, Zhu Han, Mérouane Debbah, Are
Hjorungnes, and Tamer Basar. Coalitional game theory
for communication networks. IEEE signal processing
magazine, 26(5):77–97, 2009.

[42] Alessio Sacco, Matteo Flocco, Flavio Esposito, and
Guido Marchetto. Partially Oblivious Congestion Con-
trol for the Internet via Reinforcement Learning. IEEE
Transactions on Network and Service Management,
20(2):1644–1659, 2022.

[43] Alessio Sacco, Flocco Matteo, Flavio Esposito, and
Guido Marchetto. Owl: Congestion control with par-
tially invisible networks via reinforcement learning. In
IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2021.

[44] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark
Allman. Computing TCP’s Retransmission Timer. RFC
6298, June 2011.

[45] Stanislav Shalunov, Greg Hazel, Jana Iyengar, and Mirja
Kühlewind. Low Extra Delay Background Transport
(LEDBAT). RFC 6817, December 2012.

[46] Richard S Sutton, Andrew G Barto, et al. Introduction
to reinforcement learning, volume 135. MIT press Cam-
bridge, 1998.

[47] Kun Tan, Jingmin Song, Qian Zhang, and Murari Srid-
haran. A compound tcp approach for high-speed and
long distance networks. In Proceedings IEEE INFO-
COM 2006. 25TH IEEE International Conference on
Computer Communications, pages 1–12. IEEE, 2006.

[48] Han Tian, Xudong Liao, Chaoliang Zeng, Junxue Zhang,
and Kai Chen. Spine: an efficient drl-based congestion
control with ultra-low overhead. In Proceedings of the
18th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’22), pages
261–275. ACM, 2022.

[49] Laurens Van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[50] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan,
and Justine Sherry. Beyond Jain’s Fairness Index: Set-
ting the Bar For The Deployment of Congestion Control
Algorithms. In Proceedings of the 18th ACM Workshop
on Hot Topics in Networks (HotNets ’19), pages 17–24.
ACM, 2019.

[51] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and low
delay over cellular networks. In Proceedings of the 10th
USENIX NSDI, page 459–472, USA, 2013.

[52] Keith Winstein and Hari Balakrishnan. Tcp ex machina:
Computer-generated congestion control. ACM SIG-
COMM Computer Communication Review, 43(4):123–
134, 2013.

[53] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary
increase congestion control (bic) for fast long-distance
networks. In IEEE INFOCOM 2004, volume 4, pages
2514–2524. IEEE, 2004.

[54] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-
van, Riad S. Wahby, Philip Levis, and Keith Winstein.
Pantheon: The Training Ground for Internet Congestion-
Control Research. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’18, page 731–743, USA, 2018. USENIX
Association.

[55] Chen-Yu Yen, Soheil Abbasloo, and H Jonathan Chao.
Computers Can Learn from the Heuristic Designs and
Master Internet Congestion Control. In Proceedings of
the ACM SIGCOMM 2023 Conference, pages 255–274.
ACM, 2023.

[56] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing
Li, Jingpu Duan, and Yi Wang. Antelope: A framework
for dynamic selection of congestion control algorithms.
In 2021 IEEE 29th International Conference on Network
Protocols (ICNP), pages 1–11. IEEE, 2021.

Appendix

A MPTS Proof

Proof Sketch of Theorem 5.1.

Proof. Let’s consider the event ξ defined as:

ξ = {∀i ∈ {1, ...,n}, j ∈ {1, ...,n−1},∣∣∣∣∣ 1
n j

n j

∑
s=1

Xi,s −µi

∣∣∣∣∣≤ 1
4

∆
i
(n+1− j)}; (7)

by Hoeffding’s inequality and a union bound, the probabil-
ity of the complementary event ξ is bounded by inequality:

P(ξ)≤
n

∑
i=1

n−1

∑
j=1

P

(∣∣∣∣∣ 1
n j

n j

∑
s=1

Xi,s −µi

∣∣∣∣∣> 1
4

∆
i
(n+1− j)

)

≤
n

∑
i=1

n−1

∑
j=1

2exp

−2n j

(
∆i
(n+1− j)

4

)2


≤ 2n2 exp
(
− T −n

8log(T)Hk
2

)
.

(8)

The last inequality is a direct conclusion from the fact that:

n j

(
∆

i
(n+1− j)

)2
≥ T −n

log(T)(T +1− j)
(

∆i
(n+1− j)

)−2

≥ T −n
log(T)Hk

2
.

(9)

It is therefore sufficient to show that on event ξ, the algo-
rithm does not make any error. This conclusion can be proved
by induction on j.

B More on Mutant’s Performance

Mutant demonstrates higher performance across a wide range
of network conditions in terms of both throughput and de-
lay. We extended our evaluation to include additional cellu-
lar traces (Figure 15), encompassing both LTE and 5G net-
works with different ranges of bandwidth, where data are
sampled from [2] and [6], respectively. Mutant consistently
ranks among the top-performing protocols across diverse sce-
narios and shows its ability to adapt and maintain optimal
performance.

5055606570
Avg. One-way Delay (ms)

0

2

4

6

8

10

12

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

Cubic
Hybla
BBR2
Westwood
Veno
Vegas

YeAH
Bic
HTCP
Highspeed
Illinois
Mutant

(a) cellular link 4 (Walking in Times Square)

3035404550
Avg. One-way Delay (ms)

11

12

13

14

15

16

17

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)
(b) cellular link 5 (Bus Riding)

30.032.535.037.540.042.545.0
Avg. One-way Delay (ms)

14

16

18

20

22

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

(c) cellular link 6 (Stationary Times Square)

485052545658606264
Avg. One-way Delay (ms)

0

50

100

150

200

250

300

350

400

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

Cubic
BBR2
Hybla
Westwood
Veno
Vegas

YeAH
Bic
HTCP
Highspeed
Illinois
Mutant

(d) 5G cellular link 4 (Corniche)

384042444648
Avg. One-way Delay (ms)

380

400

420

440

460

480

500

520
Av

g.
 T

hr
ou

gh
pu

t (
M

bp
s)

(e) 5G cellular link 5 (Corniche Walking)

280300320340360380
Avg. One-way Delay (ms)

380

400

420

440

460

480

Av
g.

 T
hr

ou
gh

pu
t (

M
bp

s)

(f) 5G cellular link 6 (City Drive)

Figure 15: Average throughput and one-way delay over different real cellular network traces.

0 250 500 750 1000 1250 1500
Step

0

2

4

R
ew

ar
d

1e7
Optimal
Mutant

Hybla
BBR2

Veno
YeAH

(a) 5G Cell. (Beach Stat.)

0 250 500 750 1000 1250 1500
Step

0

1

2

3

R
ew

ar
d

1e6
Optimal
Mutant

Vegas
BBR2

Westwood
HTCP

(b) 5G Cell. (Beach Stat. 2)

0 250 500 750 1000 1250 1500
Step

0

1

2

3

R
ew

ar
d

1e7
Optimal
Mutant

BBR2
Hybla

Veno
YeAH

(c) 5G Cell. (City Drive)

0 250 500 750 1000 1250 1500
Step

0

1

2

3

4

R
ew

ar
d

1e7
Optimal
Mutant

BBR2
HTCP

Hybla
Veno

(d) 5G Cell. (Park Stationary)

Figure 16: Performance comparison of Mutant against individual protocols in four distinct 5G cellular scenarios. Mutant’s reward
performance is also against an idealized system that always chooses the “optimal" protocol.

In Figure 16, we report the reward of our Mutant protocol
across four distinct high bandwidth 5G cellular scenarios. The
reward function follows Equation 1. We compare Mutant’s
reward against an optimal system, which selects the best-
performing protocol at each step of the run, and the reward of
each of the CCAs in the pool. The pool of best-performing
protocols is selected via the MPTS algorithm with K = 4. Our
Mutant model was then trained to convergence and subse-
quently tested on network traces for 1500 steps and δ = 10−2

(see Section 6.1) in each scenario. We observe that Mutant,

consistently achieves high rewards, demonstrating its adaptive
capability by dynamically selecting the best-performing proto-
col at each step and for every network trace It is worth noting
that the occasional dips in Mutant’s performance, which cor-
respond to intentional exploration (hence suboptimal) steps,
are the only instances where it deviates from the optimal
choice. However, these exploration phases enable Mutant to
continually evaluate and adapt to potential changes in network
conditions.

	Introduction
	Mutant: Motivation and Design Overview
	Design and Implementation
	Protocol Manager
	Learning Module

	Problem Statement: Selecting the Best Protocols to Learn From
	Mutant Online Learning Logic
	Challenges to Achieve an Online Learner
	Top-k selection with MPTS

	Performance Evaluation
	Evaluation Settings
	Throughput-Delay Performance
	MPTS: Top-k Evaluation
	Fairness and Harm Analysis
	Ablation Study

	Related Work
	Conclusion
	MPTS Proof
	More on Mutant's Performance

