
Randal E. Bryant
adapted by Jason Fritts

CS:APP2e

CS:APP Chapter 4
Computer Architecture

Pipelined
Implementation

CS:APP Chapter 4
Computer Architecture

Pipelined
Implementation

http://csapp.cs.cmu.edu

– 2 – CS:APP2e

OverviewOverview

General Principles of Pipelining
� Goal

� Difficulties

Creating a Pipelined Y86 Processor
� Rearranging SEQ to create pipelined datapath, PIPE

� Inserting pipeline registers

� Problems with data and control hazards

– 3 – CS:APP2e

Fundamentals of
Pipelining

Fundamentals of
Pipelining

– 4 – CS:APP2e

Real-World Pipelines: Car WashesReal-World Pipelines: Car Washes

Idea
� Divide process into

independent stages

� Move objects through stages
in sequence

� At any given times, multiple
objects being processed

Sequential Parallel

Pipelined

– 5 – CS:APP2e

Computational ExampleComputational Example

System
� Computation requires total of 300 picoseconds

� Additional 20 picoseconds to save result in registe r

� Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

– 6 – CS:APP2e

3-Way Pipelined Version3-Way Pipelined Version

System
� Divide combinational logic into 3 blocks of 100 ps each

� Can begin new operation as soon as previous one pas ses
through stage A.
� Begin new operation every 120 ps

� Overall latency increases
� 360 ps from start to finish

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS

– 7 – CS:APP2e

Pipeline DiagramsPipeline Diagrams

Unpipelined

� Cannot start new operation until previous one compl etes

3-Way Pipelined

� Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3

– 8 – CS:APP2e

Operating a PipelineOperating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R
e
g

R
e
g

R
e
g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.
logic

A

Comb.
logic

B

Comb.
logic

C

Clock

300

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

– 9 – CS:APP2e

Limitations: Nonuniform DelaysLimitations: Nonuniform Delays

� Throughput limited by slowest stage

� Other stages sit idle for much of the time

� Challenging to partition system into balanced stage s

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic

A

Time

OP1

OP2

OP3

A B C

A B C

A B C

– 10 – CS:APP2e

Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

Single-cycle processor:
� Clock cycle = 220 + 70 + 120 + 180 + 260 + 120 + 20 = 990ps
� Clock freq = 1 / 990ps = 1 / 990*10 -12 = 1.01 GHz

Combine and/or split stages for pipelining
� Need to balance time per stage since clock freq dete rmined by

slowest time
� Must maintain original order of stages, so can’t co mbine non-

neighboring stages (e.g. can’t combine decode & data mem)

20ps delay for
hardware register at

end of cycle

– 11 – CS:APP2e

Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

3-stage pipeline:
� Best combination for minimizing clock cycle time:

� 1st stage – instr mem & decode: 220 + 70 + 20 = 310ps
� 2nd stage – reg fetch & ALU: 120 + 180 + 20 = 320ps
� 3rd stage – data mem & reg WB: 260 + 120 + 20 = 400ps

� Slowest stage is 400ps, so clock cycle time is 400p s
� Clock freq = 1 / 400ps = 1 / 400*10 -12 = 2.5 GHz

20ps delay added for
hardware register at

end of each cycle

– 12 – CS:APP2e

Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

5-stage pipeline:
� Best combination for minimizing clock cycle time:

� 1st stage – instr mem: 220 + 20ps = 240ps
� 2nd stage – decode & reg fetch: 70 + 120 + 20ps = 210ps
� 3rd stage – ALU: 180 + 20ps = 200ps
� 4th stage – data mem: 260 + 20ps = 280ps
� 5th stage – reg WB: 120 + 20ps = 140ps

� Slowest stage is 400ps, so clock cycle time is 280p s
� Clock freq = 1 / 280ps = 1 / 280*10 -12 = 3.57 GHz

20ps delay added for
hardware register at

end of each cycle

– 13 – CS:APP2e

Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

9-stage pipeline:
� Assuming can split stages evenly into halves, third s, or quarters

� not a valid assumption, but useful for simplifying problem

� Best combination for minimizing clock cycle time:
� Each circuit is its own stage, with 20ps added dela y for reg
� Split instr mem circuit into two stages, each 110+20ps
� Split data mem circuit into two stages, each 130+20ps
� Split ALU circuit into two stages, each 90+20ps

� Slowest stage is 150ps, so clock cycle time is 150p s
� Clock freq = 1 / 150ps = 1 / 150*10 -12 = 6.67 GHz

20ps delay added for
hardware register at

end of each cycle

– 14 – CS:APP2e

Limitations: Register OverheadLimitations: Register Overhead

� As try to deepen pipeline, overhead of loading regi sters
becomes more significant

� Percentage of clock cycle spent loading register:
� 1-stage pipeline: 6.25%
� 3-stage pipeline: 16.67%
� 6-stage pipeline: 28.57%

� High speeds of modern processor designs obtained th rough
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

– 15 – CS:APP2e

Converting SEQ to PIPE,
a pipelined datapath

Converting SEQ to PIPE,
a pipelined datapath

– 16 – CS:APP2e

SEQ HardwareSEQ Hardware
� Stages occur in sequence

� One operation in process at
a time

To convert to pipelined
datapath, start by adding
registers between stages,
resulting in 5 pipeline
stages:
� Fetch

� Decode

� Execute

� Memory

� Writeback

– 17 – CS:APP2e

Converting to pipelined datapathConverting to pipelined datapath

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC
valE, valM

newPC

Add pipeline
registers
between
stages

– 18 – CS:APP2e

Problem: Fetching a new instruction
each cycle

Problem: Fetching a new instruction
each cycle

Two problems
� PC generated in last stage of SEQ datapath

� PC sometimes not available until end of Execute or
Memory stage

PC needs to be computed early
� In order to fetch a new instruction every cycle, PC

generation must be moved to first stage of datapath

� Solve first problem by moving PC generation from en d of
SEQ to beginning of SEQ

Use prediction to select PC early
� Solve second problem by predicting next instruction from

current instruction

� If prediction is wrong, squash (kill) predicted ins tructions

– 19 – CS:APP2e

SEQ+ HardwareSEQ+ Hardware
� Still sequential

implementation

� Reorder PC stage to put at
beginning

PC Stage
� Task is to select PC for

current instruction

� Based on results
computed by previous
instruction

Processor State
� PC is no longer stored in

register

� But, can determine PC
based on other stored
information

– 20 – CS:APP2e

Predicting
the PC

Predicting
the PC

� Start fetch of new instruction after current has be en fetched
� Not enough time to fully determine next instruction

� Attempt to predict which instruction will be next
� Recover if prediction was incorrect

– 21 – CS:APP2e

Our Prediction StrategyOur Prediction Strategy

Predict next instruction from current instruction

Instructions that Don’t Transfer Control
� Predict next PC to be valP

� Always reliable

Call and Unconditional Jumps
� Predict next PC to be valC (destination)

� Always reliable

Conditional Jumps
� Predict next PC to be valC (destination)

� Only correct if branch is taken
� Typically right 60% of time

Return Instruction
� Don’t predict, just stall

– 22 – CS:APP2e

Recovering
from PC

Misprediction

Recovering
from PC

Misprediction

Mispredicted Jump
� Will see branch condition flag once instruction rea ches memory stage

� Can get fall-through PC from valA (value M_valA)

Return Instruction
� Will get return PC when ret reaches write-back stage (W_valM)

– 23 – CS:APP2e

Pipeline StagesPipeline Stages

Fetch
� Select current PC

� Read instruction

� Compute incremented PC

Decode
� Read program registers

Execute
� Operate ALU

Memory
� Read or write data memory

Write Back
� Update register file

– 24 – CS:APP2e

PIPE- HardwarePIPE- Hardware

� Pipeline registers hold
intermediate values
from instruction
execution

Forward (Upward) Paths
� Values passed from one

stage to next

� Cannot jump past
stages
� e.g., valC passes

through decode

– 25 – CS:APP2e

Feedback PathsFeedback Paths
Important for distinguishing

dependencies between
pipeline stages

Predicted PC
� Guess value of next PC

Branch information
� Jump taken/not-taken

� Fall-through or target
address

Return point
� Read from memory

Register updates
� To register file write ports

– 26 – CS:APP2e

Signal Naming ConventionsSignal Naming Conventions

S_Field
� Value of Field held in stage S pipeline

register

s_Field
� Value of Field computed in stage S

– 27 – CS:APP2e

Dealing with Dependencies
between Instructions

Dealing with Dependencies
between Instructions

– 28 – CS:APP2e

HazardsHazards
Hazards

� Problems caused by dependencies between separate
instructions in the pipeline

Data Hazards
� Instruction having register R as source follows sho rtly after

instruction having register R as destination

� Common condition, don’t want to slow down pipeline

Control Hazards
� Mispredict conditional branch

� Our design predicts all branches as being taken
� Naïve pipeline executes two extra instructions

� Getting return address for ret instruction
� Naïve pipeline executes three extra instructions

– 29 – CS:APP2e

Dealing with Dependencies
between Instructions

Dealing with Dependencies
between Instructions

Data Hazards

– 30 – CS:APP2e

Data Dependencies
- not a problem in SEQ

Data Dependencies
- not a problem in SEQ

System
� Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1

OP2

OP3

– 31 – CS:APP2e

Data Hazards
- the problems caused by data

dependences in pipelined datapaths

Data Hazards
- the problems caused by data

dependences in pipelined datapaths

� Result does not feed back around in time for next o peration

� Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1

OP2

OP3

A B C

A B C

A B C

OP4 A B C

– 32 – CS:APP2e

Data Dependencies between
Instructions

Data Dependencies between
Instructions

� Result from one instruction used as operand for ano ther
� Read-after-write (RAW) dependency

� Very common in actual programs

� Must make sure our pipeline handles these properly
� Get correct results
� Minimize performance impact

1 irmovl $50, %eax

2 addl %eax , %ebx

3 mrmovl 100(%ebx), %edx

– 33 – CS:APP2e

rmmovl %edi, 0(%edx)

LOOP: mrmovl 0(%ecx), %edi

mrmovl 12(%esp),%ebx

mrmovl 8(%esp), %edx

Data Dependencies – Loop -Carried
Dependencies

Data Dependencies – Loop -Carried
Dependencies

mrmovl 4(%esp), %ecx

mrmovl 0(%edx), %eax

addl %eax, %edi

iaddl $4, %ecx

iaddl $4, %edx

iaddl $-1, %ebx

jne LOOP

%ecx

%edx
%edx

%ecx

%edx

%ebx

– 34 – CS:APP2e

Pipeline DemonstrationPipeline Demonstration

File: demo-basic.ys

irmovl $1,%eax #I1

1 2 3 4 5 6 7 8 9

F D E M

Wirmovl $2,%ecx #I2 F D E M

W

irmovl $3,%edx #I3 F D E M W
irmovl $4,%ebx #I4 F D E M W
halt #I5 F D E M W

Cycle 5

W
I1

M
I2

E
I3

D
I4

F
I5

All the instructions are independent
of each other

- No dependencies exist

– 35 – CS:APP2e

Data Dependencies: 3 Nop’sData Dependencies: 3 Nop’s

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x006: irmovl $3,%eax F D E M WF D E M W

0x00c: nop F D E M WF D E M W

0x00d: nop F D E M WF D E M W

0x00e: nop F D E M WF D E M W

0x00f: addl %edx,%eax F D E M WF D E M W

10

W

R[%eax] �3

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 3

D

valA �R[%edx] = 10
valB �R[%eax] = 3

demo-h3.ys

Cycle 6

11

0x011: halt F D E M WF D E M W

Cycle 7

The addl instruction depends on the first
two instructions

- addl depends upon %edx
from the 1 st instr

- addl depends upon %eax
from the 2 nd instr

addl must wait 3 cycles after the 2 nd

instruction, so that it doesn’t fetch the
two registers before they’ve been written

to the register file

– 36 – CS:APP2e

Data Dependencies: 2 Nop’sData Dependencies: 2 Nop’s

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x006: irmovl $3,%eax F D E M WF D E M W

0x00c: nop F D E M WF D E M W

0x00d: nop F D E M WF D E M W

0x00e: addl %edx,%eax F D E M WF D E M W

0x010: halt F D E M WF D E M W

10# demo-h2.ys

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 0

•
•
•

W

R[%eax] �3

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 0

D

valA �R[%edx] = 10
valB �R[%eax] = 0

•
•
•

Cycle 6

Error

If addl executes one cycle earlier,
it gets the wrong value for %eax

– 37 – CS:APP2e

Data Dependencies: 1 NopData Dependencies: 1 Nop

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M

W0x006: irmovl $3,%eax F D E M

W

0x00c: nop F D E M WF D E M W

0x00d: addl %edx,%eax F D E M WF D E M W

0x00f: halt F D E M WF D E M W

demo-h1.ys

W

R[%edx] �10

W

R[%edx] �10

D

valA �R[%edx] = 0
valB �R[%eax] = 0

D

valA �R[%edx] = 0
valB �R[%eax] = 0

•
•
•

Cycle 5

Error

M
M_valE = 3
M_dstE = %eax

If addl executes two cycles earlier,
it gets the wrong value for both

%eax and %ebx

– 38 – CS:APP2e

Data Dependencies: No NopData Dependencies: No Nop

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8

F D E M

W0x006: irmovl $3,%eax F D E M

W

F D E M W0x00c: addl %edx,%eax

F D E M W0x00e: halt

demo-h0.ys

E

D

valA �R[%edx] = 0
valB �R[%eax] = 0

D

valA �R[%edx] = 0
valB �R[%eax] = 0

Cycle 4

Error

M
M_valE = 10
M_dstE = %edx

e_valE �0 + 3 = 3
E_dstE = %eax

Like the prior case, if addl
executes three cycles earlier, it
gets the wrong value for both

%eax and %ebx

– 39 – CS:APP2e

Stalling for Data DependenciesStalling for Data Dependencies

� If instruction follows too closely after one that w rites
register, slow it down

� Hold instruction in decode

� Dynamically inject nop into execute stage

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl $3,%eax F D E M W
0x00c: nop F D E M W

bubble

F

E M W
0x00e: addl %edx,%eax D D E M W
0x010: halt F D E M W

10# demo-h2.ys

F

F D E M W0x00d: nop

11

– 40 – CS:APP2e

Stall ConditionStall Condition
Source Registers

� srcA and srcB of current
instruction in decode
stage

Destination Registers
� dstE and dstM fields

� Instructions in execute,
memory, and write-back
stages

Special Case
� Don’t stall for register ID

15 (0xF)
� Indicates absence of

register operand

� Don’t stall for failed
conditional move

– 41 – CS:APP2e

Detecting Stall ConditionDetecting Stall Condition

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl $3,%eax F D E M W
0x00c: nop F D E M W

bubble

F

E M W
0x00e: addl %edx,%eax D D E M W
0x010: halt F D E M W

10# demo-h2.ys

F

F D E M W0x00d: nop

11

Cycle 6

W

D

•
•
•

W_dstE = %eax
W_valE = 3

srcA = %edx
srcB = %eax

– 42 – CS:APP2e

Stalling X3Stalling X3

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl $3,%eax F D E M W

bubble

F

E M W
bubble

D

E M W

0x00c: addl %edx,%eax D D E M W
0x00e: halt F D E M W

10# demo-h0.ys

F F

D

F

E M Wbubble

11

Cycle 4 •
•
•

W
W_dstE = %eax

D
srcA = %edx
srcB = %eax

•
•
•

M
M_dstE = %eax

D
srcA = %edx
srcB = %eax

E
E_dstE = %eax

D
srcA = %edx
srcB = %eax

Cycle 5

Cycle 6

– 43 – CS:APP2e

What Happens When Stalling?What Happens When Stalling?

� Stalling instruction held back in decode stage

� Following instruction stays in fetch stage

� Bubbles injected into execute stage
� Like dynamically generated nop’s
� Move through later stages

0x000: irmovl $10,%edx

0x006: irmovl $3,%eax

0x00c: addl %edx,%eax

Cycle 4

0x00e: halt

0x000: irmovl $10,%edx

0x006: irmovl $3,%eax

0x00c: addl %edx,%eax

demo-h0.ys

0x00e: halt

0x000: irmovl $10,%edx

0x006: irmovl $3,%eax

bubble

0x00c: addl %edx,%eax

Cycle 5

0x00e: halt

0x006: irmovl $3,%eax

bubble

0x00c: addl %edx,%eax

bubble

Cycle 6

0x00e: halt

bubble

bubble

0x00c: addl %edx,%eax

bubble

Cycle 7

0x00e: halt

bubble

bubble

Cycle 8

0x00c: addl %edx,%eax

0x00e: halt

Write Back
Memory
Execute
Decode

Fetch

– 44 – CS:APP2e

Pipeline Register ModesPipeline Register Modes
Rising
clock
Rising
clock

� �
Output = y

yy

Rising
clock
Rising
clock

� �
Output = x

xx

xx
n
o
p

Rising
clock
Rising
clock

� �
Output = nop

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Output = xInput = y

stall
= 0

bubble
= 1

Bubble

– 45 – CS:APP2e

Implementing StallingImplementing Stalling

Pipeline Control
� Combinational logic detects stall condition

� Sets mode signals for how pipeline registers should update

E

M

W

F

D

CC

rB

srcA
srcB

icode valE valM dstE dstM

Cndicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Cnd

D_icode

E_icode

M_icode

E_dstMPipe
control
logic

D_bubble

D_stall

E_bubble

F_stall

M_bubble

W_stall

set_cc

stat

stat

stat

stat

W_stat

stat

m_stat

– 46 – CS:APP2e

Data ForwardingData Forwarding

Naïve Pipeline
� Register isn’t written until completion of write-ba ck stage

� Source operands read from register file in decode s tage
� Needs to be in register file at start of stage

Observation
� Value generated in execute or memory stage

Trick
� Pass value directly from generating instruction to decode

stage

� Needs to be available at end of decode stage

– 47 – CS:APP2e

Data Forwarding ExampleData Forwarding Example

� irmovl in write-
back stage

� Destination value in
W pipeline register

� Forward as valB for
decode stage

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x006: irmovl $3,%eax F D E M WF D E M W
0x00c: nop F D E M WF D E M W
0x00d: nop F D E M WF D E M W
0x00e: addl %edx,%eax F D E M WF D E M W
0x010: halt F D E M WF D E M W

10# demo-h2.ys

Cycle 6

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �W_valE = 3

•
•
•

W_dstE = %eax
W_valE = 3

srcA = %edx
srcB = %eax

– 48 – CS:APP2e

Bypass PathsBypass Paths
Decode Stage

� Forwarding logic selects
valA and valB

� Normally from register
file

� Forwarding: get valA or
valB from later pipeline
stage

Forwarding Sources
� Execute: valE

� Memory: valE, valM

� Write back: valE, valM

– 49 – CS:APP2e

Data Forwarding Example #2Data Forwarding Example #2

Register %edx
� Generated by ALU

during previous cycle

� Forward from memory
as valA

Register %eax
� Value just generated

by ALU

� Forward from execute
as valB

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8

F D E M

W0x006: irmovl $3,%eax F D E M

W

F D E M W0x00c: addl %edx,%eax

F D E M W0x00e: halt

demo-h0.ys

Cycle 4

M

D

valA � M_valE = 10
valB � e_valE = 3

M_dstE = %edx
M_valE = 10

srcA = %edx
srcB = %eax

E

E_dstE = %eax
e_valE � 0 + 3 = 3

– 50 – CS:APP2e

Multiple Forwarding
Choices
� Which one should

have priority

� Match serial
semantics

� Use matching value
from earliest pipeline
stage

0x000: irmovl $1, %eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x006: irmovl $2, %eax F D E M WF D E M W
0x00c: irmovl $3, %eax F D E M WF D E M W
0x012: rrmovl %eax, %edx F D E M WF D E M W
0x014: halt F D E M WF D E M W

10# demo-priority.ys

W

R[%eax] �3

W

R[%eax] �1

D

valA �R[%edx] = 10
valB �R[%eax] = 0

D

valA �R[%edx] = 10
valB �R[

D

valA �R[%eax] = ?
valB �0

Cycle 5

W

R[%eax] �3

M

R[%eax] �2

W

R[%eax] �3

E

R[%eax] �3

Forwarding PriorityForwarding Priority

– 51 – CS:APP2e

Implementing
Forwarding

Implementing
Forwarding

� Add additional feedback
paths from E, M, and W
pipeline registers into
decode stage

� Create logic blocks to
select from multiple
sources for valA and valB
in decode stage

– 52 – CS:APP2e

Implementing ForwardingImplementing Forwarding
What should be the A value?
int new_E_valA = [

Use incremented PC
D_icode in { ICALL, IJXX } : D_valP;

Forward valE from execute
d_srcA == e_dstE : e_valE;

Forward valM from memory
d_srcA == M_dstM : m_valM;

Forward valE from memory
d_srcA == M_dstE : M_valE;

Forward valM from write back
d_srcA == W_dstM : W_valM;

Forward valE from write back
d_srcA == W_dstE : W_valE;

Use value read from register file
1 : d_rvalA;

];

– 53 – CS:APP2e

Limitation of ForwardingLimitation of Forwarding

Load-use dependency
� Value needed by end of

decode stage in cycle 7

� Value read from memory in
memory stage of cycle 8

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M

W0x006: irmovl $3,%ecx F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M W
0x012: irmovl $10,%ebx F D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M W

demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

F D E M W

10

F D E M W

11

Error

M
M_dstM = %eax
m_valM � M[128] = 3

Cycle 7 Cycle 8

D

valA � M_valE = 10
valB � R[%eax] = 0

D

valA � M_valE = 10
valB � R[%eax] = 0

M
M_dstE = %ebx
M_valE = 10

•
•
•

– 54 – CS:APP2e

Avoiding Load/Use HazardAvoiding Load/Use Hazard

� Stall using instruction for
one cycle

� Can then pick up loaded
value by forwarding from
memory stage

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M

W

F D E M

W0x006: irmovl $3,%ecx F D E M

W

F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M WF D E M W
0x012: irmovl $10,%ebx F D E M WF D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M WF D E M W

demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

M
M_dstM = %eax
m_valM � M[128] = 3

M
M_dstM = %eax
m_valM � M[128] = 3

Cycle 8

D

valA � W_valE = 10
valB � m_valM = 3

D

valA � W_valE = 10
valB � m_valM = 3

W
W_dstE = %ebx
W_valE = 10

W
W_dstE = %ebx
W_valE = 10

•
•
•

– 55 – CS:APP2e

Detecting Load/Use HazardDetecting Load/Use Hazard

Condition Trigger

Load/Use Hazard E_icode in { IMRMOVL, IPOPL } &&

E_dstM in { d_srcA, d_srcB }

– 56 – CS:APP2e

Control for Load/Use HazardControl for Load/Use Hazard

� Stall instructions in fetch
and decode stages

� Inject bubble into execute
stage

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M
W

F D E M
W0x006: irmovl $3,%ecx F D E M

W
F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M WF D E M W
0x012: irmovl $10,%ebx F D E M WF D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M WF D E M W

demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal

– 57 – CS:APP2e

Dealing with Dependencies
between Instructions

Dealing with Dependencies
between Instructions

Control Hazards

– 58 – CS:APP2e

Branch Misprediction ExampleBranch Misprediction Example

� Should only execute first 8 instructions

0x000: xorl %eax,%eax
0x002: jne t # Not taken
0x007: irmovl $1, %eax # Fall through
0x00d: nop
0x00e: nop
0x00f: nop
0x010: halt
0x011: t: irmovl $3, %edx # Target (Should not execute)
0x017: irmovl $4, %ecx # Should not execute
0x01d: irmovl $5, %edx # Should not execute

demo-j.ys

– 59 – CS:APP2e

Branch Misprediction TraceBranch Misprediction Trace

� Incorrectly execute two
instructions at branch target

0x000: xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M

W0x002: jne t # Not taken F D E M

W

0x011: t: irmovl $3, %edx # Target F D E M W

0x017: irmovl $4, %ecx # Target+1 F D E M W

0x007: irmovl $1, %eax # Fall Through F D E M W

demo-j

F D E M W

Cycle 5

E

valE � 3
dstE = %edx

E

valE � 3
dstE = %edx

M
M_Cnd = 0
M_valA = 0x007

D

valC = 4
dstE = %ecx

D

valC = 4
dstE = %ecx

F

valC � 1
rB � %eax

F

valC � 1
rB � %eax

– 60 – CS:APP2e

Handling MispredictionHandling Misprediction

Predict branch as taken
� Fetch 2 instructions at target

Cancel when mispredicted
� Detect branch not-taken in execute stage

� On following cycle, replace instructions in execute and
decode by bubbles

� No side effects have occurred yet

0x000: xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x002: jne target # Not taken F D E M WF D E M W

E M W

10# demo-j.ys

0x011: t: irmovl $2,%edx # Target

bubble

0x017: irmovl $3,%ebx # Target+1

F D

E M W

D

F
bubble

0x007: irmovl $1,%eax # Fall through

0x00d: nop

F D E M WF D E M W

F D E M WF D E M W

– 61 – CS:APP2e

Detecting Mispredicted BranchDetecting Mispredicted Branch

Condition Trigger

Mispredicted Branch E_icode = IJXX & !e_Cnd

– 62 – CS:APP2e

Control for MispredictionControl for Misprediction

0x000: xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x002: jne target # Not taken F D E M WF D E M W

E M W

10# demo-j.ys

0x011: t: irmovl $2,%edx # Target

bubble

0x017: irmovl $3,%ebx # Target+1

F D

E M W

D

F
bubble

0x007: irmovl $1,%eax # Fall through

0x00d: nop

F D E M WF D E M W

F D E M WF D E M W

Condition F D E M W

Mispredicted Branch normal bubble bubble normal normal

– 63 – CS:APP2e

0x000: irmovl Stack,%esp # Initialize stack pointer
0x006: call p # Procedure call
0x00b: irmovl $5,%esi # Return point
0x011: halt
0x020: .pos 0x20
0x020: p: irmovl $-1,%edi # procedure
0x026: ret
0x027: irmovl $1,%eax # Should not be executed
0x02d: irmovl $2,%ecx # Should not be executed
0x033: irmovl $3,%edx # Should not be executed
0x039: irmovl $4,%ebx # Should not be executed
0x100: .pos 0x100
0x100: Stack: # Stack: Stack pointer

Return ExampleReturn Example

� Previously executed three additional instructions

demo-retb.ys

– 64 – CS:APP2e

Incorrect Return ExampleIncorrect Return Example
0x023: ret F D E M

W0x024: irmovl $1,%eax # Oops! F D E M

W

0x02a: irmovl $2,%ecx # Oops! F D E M W
0x030: irmovl $3,%edx # Oops! F D E M W
0x00e: irmovl $5,%esi # Return F D E M W

demo-ret

F D E M W

E
valE � 2
dstE = %ecx

M
valE = 1
dstE = %eax

D
valC = 3
dstE = %edx

F
valC � 5
rB � %esi

W

valM = 0x0e

0x023: ret F D E M

W0x024: irmovl $1,%eax # Oops! F D E M

W

0x02a: irmovl $2,%ecx # Oops! F D E M W
0x030: irmovl $3,%edx # Oops! F D E M W
0x00e: irmovl $5,%esi # Return F D E M W

demo-ret

F D E M W

E
valE � 2
dstE = %ecx

E
valE � 2
dstE = %ecx

M
valE = 1
dstE = %eax

M
valE = 1
dstE = %eax

D
valC = 3
dstE = %edx

D
valC = 3
dstE = %edx

F
valC � 5
rB � %esi

F
valC � 5
rB � %esi

W

valM = 0x0e

W

valM = 0x0e

� Incorrectly execute 3
instructions following ret

– 65 – CS:APP2e

0x026: ret F D E M

Wbubble F D E M

W

bubble F D E M W
bubble F D E M W

0x00b: irmovl $5,%esi # Return F D E M W

demo-retb

F D E M W

F
valC �5
rB � %esi

F
valC �5
rB � %esi

W

valM = 0x0b

W

valM = 0x0b

•
•
•

Correct Return ExampleCorrect Return Example

� As ret passes through
pipeline, stall at fetch stage
� While in decode, execute, and

memory stage

� Inject bubble into decode
stage

� Release stall when reach
write-back stage

– 66 – CS:APP2e

Detecting ReturnDetecting Return

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

– 67 – CS:APP2e

0x026: ret F D E M

Wbubble F D E M

W

bubble F D E M W
bubble F D E M W

0x00b: irmovl $5,%esi # Return F D E M W

demo-retb

F D E M W

Control for ReturnControl for Return

Condition F D E M W

Processing ret stall bubble normal normal normal

– 68 – CS:APP2e

Special Control CasesSpecial Control Cases
Detection

Action (on next cycle)

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVL, IPOPL } &&
E_dstM in { d_srcA, d_srcB }

Mispredicted Branch E_icode = IJXX & !e_Cnd

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Mispredicted Branch normal bubble bubble normal normal

– 69 – CS:APP2e

Implementing Pipeline ControlImplementing Pipeline Control

� Combinational logic generates pipeline control sign als

� Action occurs at start of following cycle

E

M

W

F

D

CC

rB

srcA
srcB

icode valE valM dstE dstM

Cndicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Cnd

D_icode

E_icode

M_icode

E_dstMPipe
control
logic

D_bubble

D_stall

E_bubble

F_stall

M_bubble

W_stall

set_cc

stat

stat

stat

stat

W_stat

stat

m_stat

– 76 – CS:APP2e

Pipeline Control LogicPipeline Control Logic

� A sequence of control instructions complicates the control
logic
� in particular, should stall in Decode stage (instea d of bubble, as

an initial inspection suggests)

� Load/use hazard should get priority
� ret instruction should be held in decode stage for addi tional

cycle

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

– 77 – CS:APP2e

Pipeline SummaryPipeline Summary

Concept
� Break instruction execution into 5 stages

� Run instructions through in pipelined mode

Limitations
� Can’t handle dependencies between instructions when

instructions follow too closely

� Data dependencies
� One instruction writes register, later one reads it

� Control dependency
� Instruction sets PC in way that pipeline did not pr edict correctly
� Mispredicted branch and return

– 78 – CS:APP2e

Pipeline SummaryPipeline Summary

Data Hazards
� Most handled by forwarding

� No performance penalty

� Load/use hazard requires one cycle stall

Control Hazards
� Cancel instructions when detect mispredicted branch

� Two clock cycles wasted

� Stall fetch stage while ret passes through pipeline
� Three clock cycles wasted

Control Combinations
� Must analyze carefully

� First version had subtle bug
� Only arises with unusual instruction combination

