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OverviewOverview

General Principles of Pipelining
� Goal

� Difficulties

Creating a Pipelined Y86 Processor
� Rearranging SEQ to create pipelined datapath, PIPE

� Inserting pipeline registers

� Problems with data and control hazards
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Fundamentals of
Pipelining

Fundamentals of
Pipelining
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Real-World Pipelines: Car WashesReal-World Pipelines: Car Washes

Idea
� Divide process into 

independent stages

� Move objects through stages 
in sequence

� At any given times, multiple 
objects being processed

Sequential Parallel

Pipelined
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Computational ExampleComputational Example

System
� Computation requires total of 300 picoseconds

� Additional 20 picoseconds to save result in registe r

� Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS
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3-Way Pipelined Version3-Way Pipelined Version

System
� Divide combinational logic into 3 blocks of 100 ps each

� Can begin new operation as soon as previous one pas ses 
through stage A.
� Begin new operation every 120 ps

� Overall latency increases
� 360 ps from start to finish

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS
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Pipeline DiagramsPipeline Diagrams

Unpipelined

� Cannot start new operation until previous one compl etes

3-Way Pipelined

� Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3
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Operating a PipelineOperating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C
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R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R
e
g

R
e
g

R
e
g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.
logic

A

Comb.
logic

B

Comb.
logic

C

Clock

300

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359
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Limitations: Nonuniform DelaysLimitations: Nonuniform Delays

� Throughput limited by slowest stage

� Other stages sit idle for much of the time

� Challenging to partition system into balanced stage s

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic

A

Time

OP1

OP2

OP3

A B C

A B C

A B C
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Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

Single-cycle processor:
� Clock cycle = 220 + 70 + 120 + 180 + 260 + 120 + 20  = 990ps
� Clock freq = 1 / 990ps = 1 / 990*10 -12 = 1.01 GHz

Combine and/or split stages for pipelining
� Need to balance time per stage since clock freq dete rmined by 

slowest time
� Must maintain original order of stages, so can’t co mbine non-

neighboring stages (e.g. can’t combine decode & data mem)

20ps delay for 
hardware register at 

end of cycle
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Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

3-stage pipeline:
� Best combination for minimizing clock cycle time:

� 1st stage – instr mem & decode: 220 + 70 + 20 = 310ps
� 2nd stage – reg fetch & ALU: 120 + 180 + 20 = 320ps
� 3rd stage – data mem & reg WB: 260 + 120 + 20 = 400ps

� Slowest stage is 400ps, so clock cycle time is 400p s
� Clock freq = 1 / 400ps = 1 / 400*10 -12 = 2.5 GHz

20ps delay added for 
hardware register at 

end of each cycle
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Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

5-stage pipeline:
� Best combination for minimizing clock cycle time:

� 1st stage – instr mem: 220 + 20ps = 240ps
� 2nd stage – decode  & reg fetch: 70 + 120 + 20ps = 210ps
� 3rd stage – ALU: 180 + 20ps = 200ps
� 4th stage – data mem: 260 + 20ps = 280ps
� 5th stage – reg WB: 120 + 20ps = 140ps

� Slowest stage is 400ps, so clock cycle time is 280p s
� Clock freq = 1 / 280ps = 1 / 280*10 -12 = 3.57 GHz

20ps delay added for 
hardware register at 

end of each cycle
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Sample Circuit Delays & PipeliningSample Circuit Delays & Pipelining

9-stage pipeline:
� Assuming can split stages evenly into halves, third s, or quarters

� not a valid assumption, but useful for simplifying problem

� Best combination for minimizing clock cycle time:
� Each circuit is its own stage, with 20ps added dela y for reg
� Split instr mem circuit into two stages, each 110+20ps
� Split data mem circuit into two stages, each 130+20ps
� Split ALU circuit into two stages, each 90+20ps

� Slowest stage is 150ps, so clock cycle time is 150p s
� Clock freq = 1 / 150ps = 1 / 150*10 -12 = 6.67 GHz

20ps delay added for 
hardware register at 

end of each cycle
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Limitations: Register OverheadLimitations: Register Overhead

� As try to deepen pipeline, overhead of loading regi sters 
becomes more significant

� Percentage of clock cycle spent loading register:
� 1-stage pipeline: 6.25% 
� 3-stage pipeline: 16.67% 
� 6-stage pipeline: 28.57%

� High speeds of modern processor designs obtained th rough 
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps
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Converting SEQ to PIPE,
a pipelined datapath

Converting SEQ to PIPE,
a pipelined datapath
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SEQ HardwareSEQ Hardware
� Stages occur in sequence

� One operation in process at 
a time

To convert to pipelined 
datapath, start by adding 
registers between stages, 
resulting in 5 pipeline 
stages:
� Fetch

� Decode

� Execute

� Memory

� Writeback
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Converting to pipelined datapathConverting to pipelined datapath

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC
valE, valM

newPC

Add pipeline 
registers 
between 
stages
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Problem:  Fetching a new instruction
each cycle

Problem:  Fetching a new instruction
each cycle

Two problems
� PC generated in last stage of SEQ datapath

� PC sometimes not available until end of Execute or 
Memory stage

PC needs to be computed early
� In order to fetch a new instruction every cycle, PC  

generation must be moved to first stage of datapath

� Solve first problem by moving PC generation from en d of 
SEQ to beginning of SEQ

Use prediction to select PC early
� Solve second problem by predicting next instruction from 

current instruction

� If prediction is wrong, squash (kill) predicted ins tructions
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SEQ+ HardwareSEQ+ Hardware
� Still sequential 

implementation

� Reorder PC stage to put at 
beginning

PC Stage
� Task is to select PC for 

current instruction

� Based on results 
computed by previous 
instruction

Processor State
� PC is no longer stored in 

register

� But, can determine PC 
based on other stored 
information
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Predicting 
the PC

Predicting 
the PC

� Start fetch of new instruction after current has be en fetched
� Not enough time to fully determine next instruction

� Attempt to predict which instruction will be next
� Recover if prediction was incorrect
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Our Prediction StrategyOur Prediction Strategy

Predict next instruction from current instruction

Instructions that Don’t Transfer Control
� Predict next PC to be valP

� Always reliable

Call and Unconditional Jumps
� Predict next PC to be valC (destination)

� Always reliable

Conditional Jumps
� Predict next PC to be valC (destination)

� Only correct if branch is taken
� Typically right 60% of time

Return Instruction
� Don’t predict, just stall
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Recovering 
from PC 

Misprediction

Recovering 
from PC 

Misprediction

Mispredicted Jump
� Will see branch condition flag once instruction rea ches memory stage

� Can get fall-through PC from valA (value M_valA)

Return Instruction
� Will get return PC when ret reaches write-back stage (W_valM)
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Pipeline StagesPipeline Stages

Fetch
� Select current PC

� Read instruction

� Compute incremented PC

Decode
� Read program registers

Execute
� Operate ALU

Memory
� Read or write data memory

Write Back
� Update register file
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PIPE- HardwarePIPE- Hardware

� Pipeline registers hold 
intermediate values 
from instruction 
execution

Forward (Upward) Paths
� Values passed from one 

stage to next

� Cannot jump past 
stages
� e.g., valC passes 

through decode
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Feedback PathsFeedback Paths
Important for distinguishing 

dependencies between 
pipeline stages

Predicted PC
� Guess value of next PC

Branch information
� Jump taken/not-taken

� Fall-through or target 
address

Return point
� Read from memory

Register updates
� To register file write ports
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Signal Naming ConventionsSignal Naming Conventions

S_Field
� Value of Field held in stage S pipeline 

register

s_Field
� Value of Field computed in stage S
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Dealing with Dependencies 
between Instructions

Dealing with Dependencies 
between Instructions
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HazardsHazards
Hazards

� Problems caused by dependencies between separate 
instructions in the pipeline

Data Hazards
� Instruction having register R as source follows sho rtly after 

instruction having register R as destination

� Common condition, don’t want to slow down pipeline

Control Hazards
� Mispredict conditional branch

� Our design predicts all branches as being taken
� Naïve pipeline executes two extra instructions

� Getting return address for ret instruction
� Naïve pipeline executes three extra instructions
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Dealing with Dependencies 
between Instructions

Dealing with Dependencies 
between Instructions

Data Hazards
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Data Dependencies 
- not a problem in SEQ

Data Dependencies 
- not a problem in SEQ

System
� Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1

OP2

OP3
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Data Hazards
- the problems caused by data 

dependences in pipelined datapaths

Data Hazards
- the problems caused by data 

dependences in pipelined datapaths

� Result does not feed back around in time for next o peration

� Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1

OP2

OP3

A B C

A B C

A B C

OP4 A B C
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Data Dependencies between 
Instructions

Data Dependencies between 
Instructions

� Result from one instruction used as operand for ano ther
� Read-after-write (RAW) dependency

� Very common in actual programs

� Must make sure our pipeline handles these properly
� Get correct results
� Minimize performance impact

1 irmovl $50, %eax

2 addl %eax ,  %ebx

3 mrmovl 100( %ebx ),  %edx
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rmmovl %edi, 0(%edx)

LOOP:   mrmovl 0(%ecx), %edi

mrmovl 12(%esp),%ebx

mrmovl 8(%esp), %edx

Data Dependencies – Loop -Carried
Dependencies

Data Dependencies – Loop -Carried
Dependencies

mrmovl 4(%esp), %ecx

mrmovl 0(%edx), %eax

addl %eax,  %edi

iaddl $4,    %ecx

iaddl $4,    %edx

iaddl $-1,    %ebx

jne LOOP

%ecx

%edx
%edx

%ecx

%edx

%ebx
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Pipeline DemonstrationPipeline Demonstration

File: demo-basic.ys

irmovl   $1,%eax  #I1

1 2 3 4 5 6 7 8 9

F D E M

Wirmovl   $2,%ecx  #I2 F D E M

W

irmovl   $3,%edx  #I3 F D E M W
irmovl   $4,%ebx  #I4 F D E M W
halt              #I5 F D E M W

Cycle 5

W
I1

M
I2

E
I3

D
I4

F
I5

All the instructions are independent
of each other

- No dependencies exist
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Data Dependencies: 3 Nop’sData Dependencies: 3 Nop’s

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x006: irmovl $3,%eax F D E M WF D E M W

0x00c: nop F D E M WF D E M W

0x00d: nop F D E M WF D E M W

0x00e: nop F D E M WF D E M W

0x00f: addl %edx,%eax F D E M WF D E M W

10

W

R[%eax] �3

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 3

D

valA �R[%edx] = 10
valB �R[%eax] = 3

# demo-h3.ys

Cycle 6

11

0x011: halt F D E M WF D E M W

Cycle 7

The addl instruction depends on the first 
two instructions

- addl depends upon %edx
from the 1 st instr

- addl depends upon %eax
from the 2 nd instr

addl must wait 3 cycles after the 2 nd

instruction, so that it doesn’t fetch the 
two registers before they’ve been written 

to the register file
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Data Dependencies: 2 Nop’sData Dependencies: 2 Nop’s

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W

0x006: irmovl $3,%eax F D E M WF D E M W

0x00c: nop F D E M WF D E M W

0x00d: nop F D E M WF D E M W

0x00e: addl %edx,%eax F D E M WF D E M W

0x010: halt F D E M WF D E M W

10# demo-h2.ys

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 0

•
•
•

W

R[%eax] �3

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �R[%eax] = 0

D

valA �R[%edx] = 10
valB �R[%eax] = 0

•
•
•

Cycle 6

Error

If addl executes one cycle earlier, 
it gets the wrong value for %eax
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Data Dependencies: 1 NopData Dependencies: 1 Nop

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M

W0x006: irmovl $3,%eax F D E M

W

0x00c: nop F D E M WF D E M W

0x00d: addl %edx,%eax F D E M WF D E M W

0x00f: halt F D E M WF D E M W

# demo-h1.ys

W

R[%edx] �10

W

R[%edx] �10

D

valA �R[%edx] = 0
valB �R[%eax] = 0

D

valA �R[%edx] = 0
valB �R[%eax] = 0

•
•
•

Cycle 5

Error

M
M_valE = 3
M_dstE = %eax

If addl executes two cycles earlier, 
it gets the wrong value for both 

%eax and %ebx
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Data Dependencies: No NopData Dependencies: No Nop

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8

F D E M

W0x006: irmovl $3,%eax F D E M

W

F D E M W0x00c: addl %edx,%eax

F D E M W0x00e: halt

# demo-h0.ys

E

D

valA �R[%edx] = 0
valB �R[%eax] = 0

D

valA �R[%edx] = 0
valB �R[%eax] = 0

Cycle 4

Error

M
M_valE = 10
M_dstE = %edx

e_valE �0 + 3 = 3 
E_dstE = %eax

Like the prior case, if addl
executes three cycles earlier, it 
gets the wrong value for both 

%eax and %ebx
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Stalling for Data DependenciesStalling for Data Dependencies

� If instruction follows too closely after one that w rites 
register, slow it down

� Hold instruction in decode

� Dynamically inject nop into execute stage

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl  $3,%eax F D E M W
0x00c: nop F D E M W

bubble

F

E M W
0x00e: addl %edx,%eax D D E M W
0x010: halt F D E M W

10# demo-h2.ys

F

F D E M W0x00d: nop

11
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Stall ConditionStall Condition
Source Registers

� srcA and srcB of current 
instruction in decode 
stage

Destination Registers
� dstE and dstM fields

� Instructions in execute, 
memory, and write-back 
stages

Special Case
� Don’t stall for register ID 

15 (0xF)
� Indicates absence of 

register operand

� Don’t stall for failed 
conditional move
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Detecting Stall ConditionDetecting Stall Condition

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl  $3,%eax F D E M W
0x00c: nop F D E M W

bubble

F

E M W
0x00e: addl %edx,%eax D D E M W
0x010: halt F D E M W

10# demo-h2.ys

F

F D E M W0x00d: nop

11

Cycle 6

W

D

•
•
•

W_dstE = %eax
W_valE = 3

srcA = %edx
srcB = %eax
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Stalling X3Stalling X3

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M W
0x006: irmovl  $3,%eax F D E M W

bubble

F

E M W
bubble

D

E M W

0x00c: addl %edx,%eax D D E M W
0x00e: halt F D E M W

10# demo-h0.ys

F F

D

F

E M Wbubble

11

Cycle 4 •
•
•

W
W_dstE = %eax

D
srcA = %edx
srcB = %eax

•
•
•

M
M_dstE = %eax

D
srcA = %edx
srcB = %eax

E
E_dstE = %eax

D
srcA = %edx
srcB = %eax

Cycle 5

Cycle 6
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What Happens When Stalling?What Happens When Stalling?

� Stalling instruction held back in decode stage

� Following instruction stays in fetch stage

� Bubbles injected into execute stage
� Like dynamically generated nop’s
� Move through later stages

0x000: irmovl $10,%edx

0x006: irmovl  $3,%eax

0x00c: addl %edx,%eax

Cycle 4

0x00e: halt

0x000: irmovl $10,%edx

0x006: irmovl  $3,%eax

0x00c: addl %edx,%eax

# demo-h0.ys

0x00e: halt

0x000: irmovl $10,%edx

0x006: irmovl  $3,%eax

bubble

0x00c: addl %edx,%eax

Cycle 5

0x00e: halt

0x006: irmovl  $3,%eax

bubble

0x00c: addl %edx,%eax

bubble

Cycle 6

0x00e: halt

bubble

bubble

0x00c: addl %edx,%eax

bubble

Cycle 7

0x00e: halt

bubble

bubble

Cycle 8

0x00c: addl %edx,%eax

0x00e: halt

Write Back
Memory
Execute
Decode

Fetch
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Pipeline Register ModesPipeline Register Modes
Rising
clock
Rising
clock

� �
Output = y

yy

Rising
clock
Rising
clock

� �
Output = x

xx

xx
n
o
p

Rising
clock
Rising
clock

� �
Output = nop

Output = xInput = y

stall 
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall 
= 1

bubble
= 0

xxStall

Output = xInput = y

stall 
= 0

bubble
= 1

Bubble
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Implementing StallingImplementing Stalling

Pipeline Control
� Combinational logic detects stall condition

� Sets mode signals for how pipeline registers should  update

E

M

W

F

D

CC

rB

srcA
srcB

icode valE valM dstE dstM

Cndicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Cnd

D_icode

E_icode

M_icode

E_dstMPipe
control
logic

D_bubble

D_stall

E_bubble

F_stall

M_bubble

W_stall

set_cc

stat

stat

stat

stat

W_stat

stat

m_stat
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Data ForwardingData Forwarding

Naïve Pipeline
� Register isn’t written until completion of write-ba ck stage

� Source operands read from register file in decode s tage
� Needs to be in register file at start of stage

Observation
� Value generated in execute or memory stage

Trick
� Pass value directly from generating instruction to decode 

stage

� Needs to be available at end of decode stage
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Data Forwarding ExampleData Forwarding Example

� irmovl in write-
back stage

� Destination value in 
W pipeline register

� Forward as valB for 
decode stage

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x006: irmovl $3,%eax F D E M WF D E M W
0x00c: nop F D E M WF D E M W
0x00d: nop F D E M WF D E M W
0x00e: addl %edx,%eax F D E M WF D E M W
0x010: halt F D E M WF D E M W

10# demo-h2.ys

Cycle 6

W

R[%eax] �3

D

valA �R[%edx] = 10
valB �W_valE = 3

•
•
•

W_dstE = %eax
W_valE = 3

srcA = %edx
srcB = %eax
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Bypass PathsBypass Paths
Decode Stage

� Forwarding logic selects 
valA and valB

� Normally from register 
file

� Forwarding: get valA or 
valB from later pipeline 
stage

Forwarding Sources
� Execute: valE

� Memory: valE, valM

� Write back: valE, valM
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Data Forwarding Example #2Data Forwarding Example #2

Register %edx
� Generated by ALU 

during previous cycle

� Forward from memory 
as valA

Register %eax
� Value just generated 

by ALU

� Forward from execute 
as valB

0x000: irmovl $10,%edx

1 2 3 4 5 6 7 8

F D E M

W0x006: irmovl $3,%eax F D E M

W

F D E M W0x00c: addl %edx,%eax

F D E M W0x00e: halt

# demo-h0.ys

Cycle 4

M

D

valA � M_valE = 10
valB � e_valE = 3

M_dstE = %edx
M_valE = 10

srcA = %edx
srcB = %eax

E

E_dstE = %eax
e_valE � 0 + 3 = 3



– 50 – CS:APP2e

Multiple Forwarding 
Choices
� Which one should 

have priority

� Match serial 
semantics

� Use matching value 
from earliest pipeline 
stage

0x000: irmovl $1, %eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x006: irmovl $2, %eax F D E M WF D E M W
0x00c: irmovl $3, %eax F D E M WF D E M W
0x012: rrmovl %eax, %edx F D E M WF D E M W
0x014: halt F D E M WF D E M W

10# demo-priority.ys

W

R[%eax] �3

W

R[%eax] �1

D

valA �R[%edx] = 10
valB �R[%eax] = 0

D

valA �R[%edx] = 10
valB �R[

D

valA �R[%eax] = ?
valB �0

Cycle 5

W

R[%eax] �3

M

R[%eax] �2

W

R[%eax] �3

E

R[%eax] �3

Forwarding PriorityForwarding Priority
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Implementing 
Forwarding

Implementing 
Forwarding

� Add additional feedback 
paths from E, M, and W 
pipeline registers into 
decode stage

� Create logic blocks to 
select from multiple 
sources for valA and valB 
in decode stage
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Implementing ForwardingImplementing Forwarding
## What should be the A value?
int new_E_valA = [

# Use incremented PC
D_icode in { ICALL, IJXX } : D_valP; 

# Forward valE from execute 
d_srcA == e_dstE : e_valE;    

# Forward valM from memory
d_srcA == M_dstM : m_valM; 

# Forward valE from memory 
d_srcA == M_dstE : M_valE;    

# Forward valM from write back 
d_srcA == W_dstM : W_valM;    

# Forward valE from write back
d_srcA == W_dstE : W_valE;

# Use value read from register file
1 : d_rvalA;

];
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Limitation of ForwardingLimitation of Forwarding

Load-use dependency
� Value needed by end of 

decode stage in cycle 7

� Value read from memory in 
memory stage of cycle 8

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M

W0x006: irmovl $3,%ecx F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M W
0x012: irmovl $10,%ebx F D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M W

# demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

F D E M W

10

F D E M W

11

Error

M
M_dstM = %eax
m_valM � M[128] = 3

Cycle 7 Cycle 8

D

valA � M_valE = 10
valB � R[%eax] = 0

D

valA � M_valE = 10
valB � R[%eax] = 0

M
M_dstE = %ebx
M_valE = 10

•
•
•
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Avoiding Load/Use HazardAvoiding Load/Use Hazard

� Stall using instruction for 
one cycle

� Can then pick up loaded 
value by forwarding from 
memory stage

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M

W

F D E M

W0x006: irmovl $3,%ecx F D E M

W

F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M WF D E M W
0x012: irmovl $10,%ebx F D E M WF D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M WF D E M W

# demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

M
M_dstM = %eax
m_valM � M[128] = 3

M
M_dstM = %eax
m_valM � M[128] = 3

Cycle 8

D

valA � W_valE = 10
valB � m_valM = 3

D

valA � W_valE = 10
valB � m_valM = 3

W
W_dstE = %ebx
W_valE = 10

W
W_dstE = %ebx
W_valE = 10

•
•
•
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Detecting Load/Use HazardDetecting Load/Use Hazard

Condition Trigger

Load/Use Hazard E_icode in { IMRMOVL, IPOPL }  && 

E_dstM in { d_srcA, d_srcB }
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Control for Load/Use HazardControl for Load/Use Hazard

� Stall instructions in fetch 
and decode stages

� Inject bubble into execute 
stage

0x000: irmovl $128,%edx

1 2 3 4 5 6 7 8 9

F D E M
W

F D E M
W0x006: irmovl $3,%ecx F D E M

W
F D E M

W

0x00c: rmmovl %ecx, 0(%edx) F D E M WF D E M W
0x012: irmovl $10,%ebx F D E M WF D E M W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M WF D E M W

# demo-luh.ys

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

F D E M W

E M W

10

D D E M W

11

bubble

F D E M W

F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal
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Dealing with Dependencies 
between Instructions

Dealing with Dependencies 
between Instructions

Control Hazards
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Branch Misprediction ExampleBranch Misprediction Example

� Should only execute first 8 instructions

0x000:    xorl %eax,%eax 
0x002:    jne  t             # Not taken
0x007:    irmovl $1, %eax    # Fall through
0x00d:    nop
0x00e:    nop
0x00f:    nop
0x010:    halt
0x011: t: irmovl $3, %edx # Target (Should not execute)
0x017:    irmovl $4, %ecx # Should not execute
0x01d:    irmovl $5, %edx    # Should not execute

demo-j.ys
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Branch Misprediction TraceBranch Misprediction Trace

� Incorrectly execute two 
instructions at branch target

0x000:    xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M

W0x002:    jne t # Not taken F D E M

W

0x011: t: irmovl $3, %edx # Target F D E M W

0x017:    irmovl $4, %ecx # Target+1 F D E M W

0x007:    irmovl $1, %eax # Fall Through F D E M W

# demo-j

F D E M W

Cycle 5

E

valE � 3
dstE = %edx

E

valE � 3
dstE = %edx

M
M_Cnd = 0
M_valA = 0x007

D

valC = 4
dstE = %ecx

D

valC = 4
dstE = %ecx

F

valC � 1
rB � %eax

F

valC � 1
rB � %eax
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Handling MispredictionHandling Misprediction

Predict branch as taken
� Fetch 2 instructions at target

Cancel when mispredicted
� Detect branch not-taken in execute stage

� On following cycle, replace instructions in execute  and 
decode by bubbles

� No side effects have occurred yet

0x000: xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x002: jne target # Not taken F D E M WF D E M W

E M W

10# demo-j.ys

0x011: t: irmovl $2,%edx # Target

bubble

0x017:    irmovl $3,%ebx # Target+1

F D

E M W

D

F
bubble

0x007: irmovl $1,%eax # Fall through

0x00d:    nop

F D E M WF D E M W

F D E M WF D E M W
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Detecting Mispredicted BranchDetecting Mispredicted Branch

Condition Trigger

Mispredicted Branch E_icode = IJXX & !e_Cnd
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Control for MispredictionControl for Misprediction

0x000: xorl %eax,%eax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x002: jne target # Not taken F D E M WF D E M W

E M W

10# demo-j.ys

0x011: t: irmovl $2,%edx # Target

bubble

0x017:    irmovl $3,%ebx # Target+1

F D

E M W

D

F
bubble

0x007: irmovl $1,%eax # Fall through

0x00d:    nop

F D E M WF D E M W

F D E M WF D E M W

Condition F D E M W

Mispredicted Branch normal bubble bubble normal normal
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0x000:    irmovl Stack,%esp  # Initialize stack pointer
0x006:    call p             # Procedure call
0x00b:    irmovl $5,%esi     # Return point
0x011:    halt
0x020: .pos 0x20
0x020: p: irmovl $-1,%edi    # procedure
0x026:    ret
0x027:    irmovl $1,%eax     # Should not be executed
0x02d:    irmovl $2,%ecx     # Should not be executed
0x033:    irmovl $3,%edx     # Should not be executed
0x039:    irmovl $4,%ebx     # Should not be executed
0x100: .pos 0x100
0x100: Stack:                # Stack: Stack pointer

Return ExampleReturn Example

� Previously executed three additional instructions

demo-retb.ys
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Incorrect Return ExampleIncorrect Return Example
0x023:    ret F D E M

W0x024:    irmovl $1,%eax # Oops! F D E M

W

0x02a:    irmovl $2,%ecx # Oops! F D E M W
0x030:    irmovl $3,%edx # Oops! F D E M W
0x00e:    irmovl $5,%esi # Return F D E M W

# demo-ret

F D E M W

E
valE � 2
dstE = %ecx

M
valE = 1
dstE = %eax

D
valC = 3
dstE = %edx

F
valC � 5
rB � %esi

W

valM = 0x0e

0x023:    ret F D E M

W0x024:    irmovl $1,%eax # Oops! F D E M

W

0x02a:    irmovl $2,%ecx # Oops! F D E M W
0x030:    irmovl $3,%edx # Oops! F D E M W
0x00e:    irmovl $5,%esi # Return F D E M W

# demo-ret

F D E M W

E
valE � 2
dstE = %ecx

E
valE � 2
dstE = %ecx

M
valE = 1
dstE = %eax

M
valE = 1
dstE = %eax

D
valC = 3
dstE = %edx

D
valC = 3
dstE = %edx

F
valC � 5
rB � %esi

F
valC � 5
rB � %esi

W

valM = 0x0e

W

valM = 0x0e

� Incorrectly execute 3 
instructions following ret
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0x026:    ret F D E M

Wbubble F D E M

W

bubble F D E M W
bubble F D E M W

0x00b:    irmovl $5,%esi # Return F D E M W

# demo-retb

F D E M W

F
valC �5
rB � %esi

F
valC �5
rB � %esi

W

valM = 0x0b

W

valM = 0x0b

•
•
•

Correct Return ExampleCorrect Return Example

� As ret passes through 
pipeline, stall at fetch stage
� While in decode, execute, and 

memory stage

� Inject bubble into decode 
stage

� Release stall when reach 
write-back stage
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Detecting ReturnDetecting Return

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }
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0x026:    ret F D E M

Wbubble F D E M

W

bubble F D E M W
bubble F D E M W

0x00b:    irmovl $5,%esi # Return F D E M W

# demo-retb

F D E M W

Control for ReturnControl for Return

Condition F D E M W

Processing ret stall bubble normal normal normal
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Special Control CasesSpecial Control Cases
Detection

Action (on next cycle)

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVL, IPOPL } && 
E_dstM in { d_srcA, d_srcB }

Mispredicted Branch E_icode = IJXX & !e_Cnd

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Mispredicted Branch normal bubble bubble normal normal
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Implementing Pipeline ControlImplementing Pipeline Control

� Combinational logic generates pipeline control sign als

� Action occurs at start of following cycle

E

M

W

F

D

CC

rB

srcA
srcB

icode valE valM dstE dstM

Cndicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Cnd

D_icode

E_icode

M_icode

E_dstMPipe
control
logic

D_bubble

D_stall

E_bubble

F_stall

M_bubble

W_stall

set_cc

stat

stat

stat

stat

W_stat

stat

m_stat
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Pipeline Control LogicPipeline Control Logic

� A sequence of control instructions complicates the control 
logic
� in particular, should stall in Decode stage (instea d of bubble, as 

an initial inspection suggests)

� Load/use hazard should get priority
� ret instruction should be held in decode stage for addi tional 

cycle

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal
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Pipeline SummaryPipeline Summary

Concept
� Break instruction execution into 5 stages

� Run instructions through in pipelined mode

Limitations
� Can’t handle dependencies between instructions when  

instructions follow too closely

� Data dependencies
� One instruction writes register, later one reads it

� Control dependency
� Instruction sets PC in way that pipeline did not pr edict correctly
� Mispredicted branch and return
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Pipeline SummaryPipeline Summary

Data Hazards
� Most handled by forwarding

� No performance penalty

� Load/use hazard requires one cycle stall

Control Hazards
� Cancel instructions when detect mispredicted branch

� Two clock cycles wasted

� Stall fetch stage while ret passes through pipeline
� Three clock cycles wasted

Control Combinations
� Must analyze carefully

� First version had subtle bug
� Only arises with unusual instruction combination


