
Carnegie Mellon

1

Cache Memories

Authors:

Adapted from slides by Randy Bryant and Dave O’Hallaron

Carnegie Mellon

2

Chapter 6

� SRAM vs. DRAM

� Locality of reference

� Cache memory, organization, and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

3

Random-Access Memory (RAM)

� Key features

� RAM is traditionally packaged as a chip.

� Basic storage unit is normally a cell (one bit per cell).

� Multiple RAM chips form a memory.

� Static RAM (SRAM)

� Each cell stores a bit with a four or six-transistor circuit.

� Retains value indefinitely, as long as it is kept powered.

� Relatively insensitive to electrical noise (EMI), radiation, etc.

� Faster and more expensive than DRAM.

� Dynamic RAM (DRAM)

� Each cell stores bit with a capacitor. One transistor is used for access

� Value must be refreshed every 10-100 ms.

� More sensitive to disturbances (EMI, radiation,…) than SRAM.

� Slower and cheaper than SRAM.

Carnegie Mellon

4

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers

Carnegie Mellon

5

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000

access (ns) 375 200 100 70 60 50 40 9

typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000

access (ms) 87 75 28 10 8 4 3 29

typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320

access (ns) 300 150 35 15 3 2 1.5 200

Carnegie Mellon

6

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

n
s

Year

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Disk

DRAM

CPU

SSD

Carnegie Mellon

7

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental

property of computer programs known as locality

Carnegie Mellon

8

Chapter 6

� SRAM vs. DRAM

� Locality of reference

� Cache memory, organization, and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

9

Locality

� Principle of Locality: Programs tend to use data and

instructions with addresses near or equal to those they

have used recently

� Temporal locality:

� Recently referenced items are likely

to be referenced again in the near future

� Spatial locality:

� Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

10

Locality Example

� Data references

� Reference array elements in succession

(stride-1 reference pattern).

� Reference variable sum each iteration.

� Instruction references

� Reference instructions in sequence.

� Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Carnegie Mellon

11

Qualitative Estimates of Locality

� Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional

programmer.

� Question: Does this function have good locality with

respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Carnegie Mellon

12

Locality Example

� Question: Does this function have good locality with

respect to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Carnegie Mellon

13

Locality Example

� Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern

(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}

Carnegie Mellon

14

Memory Hierarchies

� Some fundamental and enduring properties of hardware

and software:

� Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).

� The gap between CPU and main memory speed is widening.

� Well-written programs tend to exhibit good locality.

� These fundamental properties complement each other

beautifully.

� They suggest an approach for organizing memory and

storage systems known as a memory hierarchy.

Carnegie Mellon

15

Chapter 6

� SRAM vs. DRAM

� Locality of reference

� Cache memory, organization, and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

16

Caches

� Cache: A smaller, faster storage device that acts as a staging

area for a subset of the data in a larger, slower device.

� Fundamental idea of a memory hierarchy:

� For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.

� Why do memory hierarchies work?

� Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.

� Thus, the storage at level k+1 can be slower, and thus larger and

cheaper per bit.

� Big Idea: The memory hierarchy creates a large pool of

storage that costs as much as the cheap storage near the

bottom, but that serves data to programs at the rate of the

fast storage near the top.

Carnegie Mellon

17

An Example Memory Hierarchy

Registers

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

cheaper

per byte

Remote secondary storage

(tapes, distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers

Main memory holds disk blocks

retrieved from local disks

L2 cache

(SRAM)

L1 cache holds cache lines retrieved

from L2 cache

CPU registers hold words retrieved

from L1 cache

L2 cache holds cache lines

retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

costlier

per byte

Carnegie Mellon

18

Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer

cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-8 bytes words

What is Cached?

Web proxy

server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

19

Cache Memories

� Cache memories are small, fast SRAM-based memories

managed automatically in hardware.

� Hold frequently accessed blocks of main memory

� CPU looks first for data in caches (e.g., L1, L2, and L3),

then in main memory.

� Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache
memories

Carnegie Mellon

20

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory

viewed as partitioned into “blocks”

Data is copied in block-sized

transfer units

Smaller, faster, more expensive

memory caches a subset of

the blocks

4

4

4

14

14

14

Carnegie Mellon

21

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:

Hit!

Carnegie Mellon

22

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:

Miss!

Block b is fetched from

memory
Request: 12

12

12

12

Block b is stored in cache

• Placement policy:

determines where b goes

• Replacement policy:

determines which block

gets evicted (victim)

Carnegie Mellon

23

General Caching Concepts:

Types of Cache Misses

� Cold (compulsory) miss

� Cold misses occur because the cache is empty.

� Conflict miss

� Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.

� E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

� Conflict misses occur when the level k cache is large enough, but multiple

data objects all map to the same level k block.

� E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

� Capacity miss

� Occurs when the set of active cache blocks (working set) is larger than

the cache.

Carnegie Mellon

24

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:

C = S x E x B data bytes

valid bit

Carnegie Mellon

25

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set

index

block

offset

data begins at this offset

• Locate set

• Check if any line in set

has matching tag

• Yes + line valid: hit

• Locate data starting

at offset

Carnegie Mellon

26

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

27

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Carnegie Mellon

28

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

Carnegie Mellon

29

Direct-Mapped Cache Simulation

M = 16 byte addresses

B = 2 bytes/block,

S = 4 sets

E = 1 block/set

Address trace (reads, one byte per read):

0 [00002]

1 [00012]

7 [01112]

8 [10002]

0 [00002]

A [10102]

6 [01102]

Initial cache configuration:

Final cache configuration:

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

0

0

1 0 M[0-1]

0

1 1 M[8-9]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3

1 1 M[8-9]

v Tag Block

0

0

0

1 0 M[0-1]

1 0 M[6-7]

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

miss

hit
miss

miss

miss

1 1 M[10-11]

miss
hit

Carnegie Mellon

30

A Higher Level Example

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

64 B ∴∴∴∴ 8 doubles

assume: cold (empty) cache,

a[0][0] goes here

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j

Assume:

one block per set, and

8 doubles per block

Carnegie Mellon

31

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

32

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

Carnegie Mellon

33

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:

• One line in set is selected for eviction and replacement

• Replacement policies: random, least recently used (LRU), …

Carnegie Mellon

34

2-Way Set Associative Cache Simulation

xx
t=2 s=1 b=1

x x

0

v Tag Block

1 10 M[8-9]

0

0

1 00 M[0-1]

1 01 M[6-7]

Set 0

Set 1

0

v Tag Block

0

0

1 10 M[8-9]
Set 0

Set 1

Initial cache configuration:

Final cache configuration:

M = 16 byte addresses

B = 2 bytes/block,

S = 4 sets

E = 1 block/set

Address trace (reads, one byte per read):

0 [00002]

1 [00012]

7 [01112]

8 [10002]

0 [00002]

A [10102]

6 [01102]

0

miss

hit
miss

hit

hit

miss
hit 1 10 M[10-11]

Carnegie Mellon

35

A Higher Level Example

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B ∴∴∴∴ 4 doubles

assume: cold (empty) cache,

a[0][0] goes here

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Assume:

two blocks per set, but

only 4 doubles per block

Ignore the variables sum, i, j

Carnegie Mellon

36

What about writes?

� Multiple copies of data exist:

� L1, L2, Main Memory, Disk

� What to do on a write-hit?

� Write-through (write immediately to memory)

� Write-back (defer write to memory until replacement of line)

� Need a dirty bit (line different from memory or not)

� What to do on a write-miss?

� Write-allocate (load into cache, update line in cache)

� Good if more writes to the location follow

� No-write-allocate (writes immediately to memory)

� Typical

� Write-through + No-write-allocate

� Write-back + Write-allocate

Carnegie Mellon

37

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:

32 KB, 8-way,

Access: 4 cycles

L2 unified cache:

256 KB, 8-way,

Access: 11 cycles

L3 unified cache:

8 MB, 16-way,

Access: 30-40 cycles

Block size: 64 bytes for

all caches.

Carnegie Mellon

38

Cache Performance Metrics

� Miss Rate

� Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

� Typical numbers (in percentages):

� 3-10% for L1

� can be quite small (e.g., < 1%) for L2, depending on size, etc.

� Hit Time

� Time to deliver a line in the cache to the processor

� includes time to determine whether the line is in the cache

� Typical numbers:

� 1-2 clock cycle for L1

� 5-20 clock cycles for L2

� Miss Penalty

� Additional time required because of a miss

� typically 50-200 cycles for main memory (Trend: increasing!)

Carnegie Mellon

39

Lets think about those numbers

� Huge difference between a hit and a miss

� Could be 100x, if just L1 and main memory

� Would you believe 99% hits is twice as good as 97%?

� Consider:

cache hit time of 1 cycle

miss penalty of 100 cycles

� Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

� This is why “miss rate” is used instead of “hit rate”

Carnegie Mellon

40

Writing Cache Friendly Code

� Make the common case go fast

� Focus on the inner loops of the core functions

� Minimize the misses in the inner loops

� Repeated references to variables are good (temporal locality)

� Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified

through our understanding of cache memories.

Carnegie Mellon

41

Today

� SRAM vs. DRAM

� Locality of reference

� Cache memory, organization, and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

42

The Memory Mountain

� Read throughput (read bandwidth)

� Number of bytes read from memory per second (MB/s)

� Memory mountain: Measured read throughput as a

function of spatial and temporal locality.

� Compact way to characterize memory system performance.

Carnegie Mellon

43

Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {

int i, result = 0;
volatile int sink;

for (i = 0; i < elems; i += stride)
result += data[i];

sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;
int elems = size / sizeof(int);

test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

}

Carnegie Mellon

44

The Memory Mountain

64
M 8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000
s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2 Working set size (bytes)

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache

8M unified L3 cache

All caches on-chip

Carnegie Mellon

45

The Memory Mountain

64
M 8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000
s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2 Working set size (bytes)

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache

8M unified L3 cache

All caches on-chip

Slopes of

spatial

locality

Carnegie Mellon

46

The Memory Mountain

64
M 8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000
s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2 Working set size (bytes)

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache

8M unified L3 cache

All caches on-chip

Slopes of

spatial

locality

Ridges of

Temporal

locality

Carnegie Mellon

47

Today

� SRAM vs. DRAM

� Locality of reference

� Cache organization and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

48

Miss Rate Analysis for Matrix Multiply

� Assume:

� Line size = 32B (big enough for four 64-bit words)

� Matrix dimension (N) is very large

� Approximate 1/N as 0.0

� Cache is not even big enough to hold multiple rows

� Analysis Method:

� Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

Carnegie Mellon

49

Matrix Multiplication Example

� Description:

� Multiply N x N matrices

� O(N3) total operations

� N reads per source

element

� N values summed per

destination

� but may be able to

hold in register

/* ijk *//* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

Carnegie Mellon

50

Layout of C Arrays in Memory (review)

� C arrays allocated in row-major order

� each row in contiguous memory locations

� Stepping through columns in one row:
� for (i = 0; i < N; i++)

sum += a[0][i];

� accesses successive elements

� if block size (B) > 4 bytes, exploit spatial locality

� compulsory miss rate = 4 bytes / B

� Stepping through rows in one column:
� for (i = 0; i < n; i++)

sum += a[i][0];

� accesses distant elements

� no spatial locality!

� compulsory miss rate = 1 (i.e. 100%)

Carnegie Mellon

51

Matrix Multiplication (ijk)

/* ijk *//* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

A B C

(i,*)

(*,j)

(i,j)

Inner loop:

Column-

wise

Row-wise Fixed

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

Carnegie Mellon

52

Matrix Multiplication (jik)

/* jik *//* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)

(i,j)

Inner loop:

Row-wise Column-

wise

Fixed

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

Carnegie Mellon

53

Matrix Multiplication (kij)

/* kij *//* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

Carnegie Mellon

54

Matrix Multiplication (ikj)

/* ikj *//* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

Carnegie Mellon

55

Matrix Multiplication (jki)

/* jki *//* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-

wise

Column-

wise

Fixed

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Carnegie Mellon

56

Matrix Multiplication (kji)

/* kji *//* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

FixedColumn-

wise

Column-

wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Carnegie Mellon

57

Summary of Matrix Multiplication

ijk (& jik):

• 2 loads, 0 stores

• misses/iter = 1.25

kij (& ikj):

• 2 loads, 1 store

• misses/iter = 0.5

jki (& kji):

• 2 loads, 1 store

• misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

Carnegie Mellon

58

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
yc

le
s

p
er

 in
n

er
 lo

o
p

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

jki / kji

ijk / jik

kij / ikj

Carnegie Mellon

59

Today

� SRAM vs. DRAM

� Locality of reference

� Cache organization and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality

Carnegie Mellon

60

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

}

Carnegie Mellon

61

Cache Miss Analysis

� Assume:

� Matrix elements are doubles

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� First iteration:

� n/8 + n = 9n/8 misses

� Afterwards in cache:

(schematic)

*=

n

*=

8 wide

Carnegie Mellon

62

Cache Miss Analysis

� Assume:

� Matrix elements are doubles

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Second iteration:

� Again:

n/8 + n = 9n/8 misses

� Total misses:

� 9n/8 * n2 = (9/8) * n3

n

*=

8 wide

Carnegie Mellon

63

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=

c

+

Block size B x B

Carnegie Mellon

64

Cache Miss Analysis

� Assume:

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Three blocks fit into cache: 3B2 < C

� First (block) iteration:

� B2/8 misses for each block

� 2n/B * B2/8 = nB/4

(omitting matrix c)

� Afterwards in cache

(schematic)

*=

*=

Block size B x B

n/B blocks

Carnegie Mellon

65

Cache Miss Analysis

� Assume:

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Three blocks fit into cache: 3B2 < C

� Second (block) iteration:

� Same as first iteration

� 2n/B * B2/8 = nB/4

� Total misses:

� nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Carnegie Mellon

66

Summary

� No blocking: (9/8) * n3

� Blocking: 1/(4B) * n3

� Suggest largest possible block size B, but limit 3B2 < C!

� Reason for dramatic difference:

� Matrix multiplication has inherent temporal locality:

� Input data: 3n2, computation 2n3

� Every array elements used O(n) times!

� But program has to be written properly

Carnegie Mellon

67

Concluding Observations

� Programmer can optimize for cache performance

� How data structures are organized

� How data are accessed

� Nested loop structure

� Blocking is a general technique

� All systems favor “cache friendly code”

� Getting absolute optimum performance is very platform specific

� Cache sizes, line sizes, associativities, etc.

� Can get most of the advantage with generic code

� Keep working set reasonably small (temporal locality)

� Use small strides (spatial locality)

