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Chapter 6

� SRAM vs. DRAM
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� Using blocking to improve temporal locality
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Random-Access Memory (RAM)

� Key features

� RAM is traditionally packaged as a chip.

� Basic storage unit is normally a cell (one bit per cell).

� Multiple RAM chips form a memory.

� Static RAM (SRAM)

� Each cell stores a bit with a four or six-transistor circuit.

� Retains value indefinitely, as long as it is kept powered.

� Relatively insensitive to electrical noise (EMI), radiation, etc.

� Faster and more expensive than DRAM.

� Dynamic RAM (DRAM)

� Each cell stores bit with a capacitor. One transistor is used for access

� Value must be refreshed every 10-100 ms.

� More sensitive to disturbances (EMI, radiation,…) than SRAM.

� Slower and cheaper than SRAM.
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SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers
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Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000

access (ns) 375 200 100 70 60 50 40 9

typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000

access (ms) 87 75 28 10 8 4 3 29

typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320

access (ns) 300 150 35 15 3 2 1.5 200
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The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds. 
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Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental 

property of computer programs known as locality
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Locality

� Principle of Locality: Programs tend to use data and 

instructions with addresses near or equal to those they 

have used recently

� Temporal locality:  

� Recently referenced items are likely 

to be referenced again in the near future

� Spatial locality:  

� Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

� Data references

� Reference array elements in succession 

(stride-1 reference pattern).

� Reference variable sum each iteration.

� Instruction references

� Reference instructions in sequence.

� Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality
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Qualitative Estimates of Locality

� Claim: Being able to look at code and get a qualitative 

sense of its locality is a key skill for a professional 

programmer.

� Question: Does this function have good locality with 

respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}
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Locality Example

� Question: Does this function have good locality with 

respect to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}
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Locality Example

� Question: Can you permute the loops so that the function 

scans the 3-d array a with a stride-1 reference pattern 

(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}
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Memory Hierarchies

� Some fundamental and enduring properties of hardware 

and software:

� Fast storage technologies cost more per byte, have less capacity, 

and require more power (heat!). 

� The gap between CPU and main memory speed is widening.

� Well-written programs tend to exhibit good locality.

� These fundamental properties complement each other 

beautifully.

� They suggest an approach for organizing memory and 

storage systems known as a memory hierarchy.
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Caches

� Cache: A smaller, faster storage device that acts as a staging 

area for a subset of the data in a larger, slower device.

� Fundamental idea of a memory hierarchy:

� For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1.

� Why do memory hierarchies work?

� Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1. 

� Thus, the storage at level k+1 can be slower, and thus larger and 

cheaper per bit.

� Big Idea:  The memory hierarchy creates a large pool of 

storage that costs as much as the cheap storage near the 

bottom, but that serves data to programs at the rate of the 

fast storage near the top.
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An Example Memory Hierarchy

Registers

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,  

slower, 

cheaper 

per byte

Remote secondary storage

(tapes, distributed file systems, Web servers)

Local disks hold files 

retrieved from disks on 

remote network servers

Main memory holds disk blocks 

retrieved from local disks

L2 cache

(SRAM)

L1 cache holds cache lines retrieved 

from L2 cache

CPU registers hold words retrieved 

from L1 cache

L2 cache holds cache lines 

retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

costlier

per byte
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Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 

cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-8 bytes words

What is Cached?

Web proxy 

server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware



Carnegie Mellon

19

Cache Memories

� Cache memories are small, fast SRAM-based memories 

managed automatically in hardware. 

� Hold frequently accessed blocks of main memory

� CPU looks first for data in caches (e.g., L1, L2, and L3), 

then in main memory.

� Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memories
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory

viewed as partitioned into “blocks”

Data is copied in block-sized 

transfer units

Smaller, faster, more expensive

memory caches a  subset of

the blocks

4

4

4

14

14

14
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:

Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:

Miss!

Block b is fetched from

memory
Request: 12

12

12

12

Block b is stored in cache

• Placement policy:

determines where b goes

• Replacement policy:

determines which block

gets evicted (victim)
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General Caching Concepts: 

Types of Cache Misses

� Cold (compulsory) miss

� Cold misses occur because the cache is empty.

� Conflict miss

� Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k.

� E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

� Conflict misses occur when the level k cache is large enough, but multiple 

data objects all map to the same level k block.

� E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

� Capacity miss

� Occurs when the set of active cache blocks (working set) is larger than 

the cache.
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General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:

C = S x E x B data bytes

valid bit
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Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set

index

block

offset

data begins at this offset

• Locate set

• Check if any line in set

has matching tag

• Yes + line valid: hit

• Locate data starting

at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

M = 16 byte addresses

B = 2 bytes/block, 

S = 4 sets

E = 1 block/set

Address trace (reads, one byte per read):

0 [00002]

1 [00012]

7 [01112] 

8 [10002]

0 [00002]

A [10102]

6 [01102]

Initial cache configuration:

Final cache configuration:

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

0

0

1 0 M[0-1]

0

1 1 M[8-9]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3

1 1 M[8-9]

v Tag Block

0

0

0

1 0 M[0-1]

1 0 M[6-7]

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

miss

hit
miss

miss

miss

1 1 M[10-11]

miss
hit
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A Higher Level Example

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

64 B        ∴∴∴∴ 8 doubles

assume: cold (empty) cache,

a[0][0] goes here

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j

Assume:

one block per set, and

8 doubles per block
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set

Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 

• One line in set is selected for eviction and replacement

• Replacement policies: random, least recently used (LRU), …
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2-Way Set Associative Cache Simulation

xx
t=2 s=1 b=1

x x

0

v Tag Block

1 10 M[8-9]

0

0

1 00 M[0-1]

1 01 M[6-7]

Set 0

Set 1

0

v Tag Block

0

0

1 10 M[8-9]
Set 0

Set 1

Initial cache configuration:

Final cache configuration:

M = 16 byte addresses

B = 2 bytes/block, 

S = 4 sets

E = 1 block/set

Address trace (reads, one byte per read):

0 [00002]

1 [00012]

7 [01112]

8 [10002]

0 [00002]

A [10102]

6 [01102]

0

miss

hit
miss

hit

hit

miss
hit 1 10 M[10-11]
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A Higher Level Example

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B           ∴∴∴∴ 4 doubles

assume: cold (empty) cache,

a[0][0] goes here

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

Assume:

two blocks per set, but

only 4 doubles per block

Ignore the variables sum, i, j
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What about writes?

� Multiple copies of data exist:

� L1, L2, Main Memory, Disk

� What to do on a write-hit?

� Write-through (write immediately to memory)

� Write-back (defer write to memory until replacement of line)

� Need a dirty bit (line different from memory or not)

� What to do on a write-miss?

� Write-allocate (load into cache, update line in cache)

� Good if more writes to the location follow

� No-write-allocate (writes immediately to memory)

� Typical

� Write-through + No-write-allocate

� Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:

32 KB,  8-way, 

Access: 4 cycles

L2 unified cache:

256 KB, 8-way, 

Access: 11 cycles

L3 unified cache:

8 MB, 16-way,

Access: 30-40 cycles

Block size: 64 bytes for 

all caches. 
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Cache Performance Metrics

� Miss Rate

� Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

� Typical numbers (in percentages):

� 3-10% for L1

� can be quite small (e.g., < 1%) for L2, depending on size, etc.

� Hit Time

� Time to deliver a line in the cache to the processor

� includes time to determine whether the line is in the cache

� Typical numbers:

� 1-2 clock cycle for L1

� 5-20 clock cycles for L2

� Miss Penalty

� Additional time required because of a miss

� typically 50-200 cycles for main memory (Trend: increasing!)
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Lets think about those numbers

� Huge difference between a hit and a miss

� Could be 100x, if just L1 and main memory

� Would you believe 99% hits is twice as good as 97%?

� Consider: 

cache hit time of 1 cycle

miss penalty of 100 cycles

� Average access time:

97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

� This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

� Make the common case go fast

� Focus on the inner loops of the core functions

� Minimize the misses in the inner loops

� Repeated references to variables are good (temporal locality)

� Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 

through our understanding of cache memories.
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Today

� SRAM vs. DRAM

� Locality of reference

� Cache memory, organization, and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality
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The Memory Mountain

� Read throughput (read bandwidth)

� Number of bytes read from memory per second (MB/s)

� Memory mountain: Measured read throughput as a 

function of spatial and temporal locality.

� Compact way to characterize memory system performance. 
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Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {

int i, result = 0; 
volatile int sink; 

for (i = 0; i < elems; i += stride)
result += data[i];

sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;
int elems = size / sizeof(int); 

test(elems, stride);                     /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

}
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The Memory Mountain
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The Memory Mountain
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The Memory Mountain
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Today

� SRAM vs. DRAM

� Locality of reference

� Cache organization and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality
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Miss Rate Analysis for Matrix Multiply

� Assume:

� Line size = 32B (big enough for four 64-bit words)

� Matrix dimension (N) is very large

� Approximate 1/N as 0.0

� Cache is not even big enough to hold multiple rows

� Analysis Method:

� Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j
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Matrix Multiplication Example

� Description:

� Multiply N x N matrices

� O(N3) total operations

� N reads per source 

element

� N values summed per 

destination

� but may be able to 

hold in register

/* ijk *//* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum
held in register
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Layout of C Arrays in Memory (review)

� C arrays allocated in row-major order

� each row in contiguous memory locations

� Stepping through columns in one row:
� for (i = 0; i < N; i++)

sum += a[0][i];

� accesses successive elements

� if block size (B) > 4 bytes, exploit spatial locality

� compulsory miss rate = 4 bytes / B

� Stepping through rows in one column:
� for (i = 0; i < n; i++)

sum += a[i][0];

� accesses distant elements

� no spatial locality!

� compulsory miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk *//* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)

(i,j)

Inner loop:

Column-

wise

Row-wise Fixed

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
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Matrix Multiplication (jik)

/* jik *//* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)

(i,j)

Inner loop:

Row-wise Column-

wise

Fixed

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
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Matrix Multiplication (kij)

/* kij *//* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:

A B C

0.0 0.25 0.25
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Matrix Multiplication (ikj)

/* ikj *//* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:

A B C

0.0 0.25 0.25
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Matrix Multiplication (jki)

/* jki *//* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-

wise

Column-

wise

Fixed

Misses per inner loop iteration:

A B C

1.0 0.0 1.0
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Matrix Multiplication (kji)

/* kji *//* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

FixedColumn-

wise

Column-

wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0
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Summary of Matrix Multiplication

ijk (& jik): 

• 2 loads, 0 stores

• misses/iter = 1.25

kij (& ikj): 

• 2 loads, 1 store

• misses/iter = 0.5

jki (& kji): 

• 2 loads, 1 store

• misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];   

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}
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Core i7 Matrix Multiply Performance
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Today

� SRAM vs. DRAM

� Locality of reference

� Cache organization and operation

� Performance impact of caches

� The memory mountain

� Rearranging loops to improve spatial locality

� Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

}
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Cache Miss Analysis

� Assume: 

� Matrix elements are doubles

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� First iteration:

� n/8 + n = 9n/8 misses

� Afterwards in cache:

(schematic)

*=

n

*=

8 wide
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Cache Miss Analysis

� Assume: 

� Matrix elements are doubles

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Second iteration:

� Again:

n/8 + n = 9n/8 misses

� Total misses:

� 9n/8 * n2 = (9/8) * n3

n

*=

8 wide
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=

c

+

Block size B x B
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Cache Miss Analysis

� Assume: 

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Three blocks       fit into cache: 3B2 < C

� First (block) iteration:

� B2/8 misses for each block

� 2n/B * B2/8 = nB/4

(omitting matrix c)

� Afterwards in cache

(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis

� Assume: 

� Cache block = 8 doubles

� Cache size C << n (much smaller than n)

� Three blocks       fit into cache: 3B2 < C

� Second (block) iteration:

� Same as first iteration

� 2n/B * B2/8 = nB/4

� Total misses:

� nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Summary

� No blocking: (9/8) * n3

� Blocking: 1/(4B) * n3

� Suggest largest possible block size B, but limit 3B2 < C!

� Reason for dramatic difference:

� Matrix multiplication has inherent temporal locality:

� Input data: 3n2, computation 2n3

� Every array elements used O(n) times!

� But program has to be written properly
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Concluding Observations

� Programmer can optimize for cache performance

� How data structures are organized

� How data are accessed

� Nested loop structure

� Blocking is a general technique

� All systems favor “cache friendly code”

� Getting absolute optimum performance is very platform specific

� Cache sizes, line sizes, associativities, etc.

� Can get most of the advantage with generic code

� Keep working set reasonably small (temporal locality)

� Use small strides (spatial locality)


