Saint Louis University

Arithmetic and Bitwise Operations
on Binary Data

CSCl 224 / ECE 317: Computer Architecture

Instructor:
Prof. Jason Fritts

Slides adapted from Bryant & O’Hallaron’s slides

Saint Louis University

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&|0 1 | 10 1
O({0 O O0(0 1
1[0 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~| AMO 1
0|1 O(0 1
110 111 O

Saint Louis University

General Boolean Algebras

m Operate on Bit Vectors

= QOperations applied bitwise
= Bitwise-AND operator: &
= Bitwise-NOR operator: |

= Bjtwise-XOR operator: A

~S

= Bitwise-NOT operator:

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Saint Louis University

Bit-Level Operations in C

m Operations &, |, ~, " Availablein C

= Apply to any “integral” data type
= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (char data type):

in hexadecimal in binary
a ~0x41 = OxBE // ~01000001, - 10111110
o ~0x00 - OxFF // ~00000000, - 11111111,

Ox69 & Ox55 = O0x41 // 01101001; & 010101012, = 01000001>
0x69 | Ox55 = Ox/D // 01101001: | 01010101 - 01111101>

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&,], !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination

m Examples (char data type):

= 10x41 = 0x00
= 10x00 = 0Ox01
= [10x41 = 0x01

= 0x69 && 0x55 = 0x01
= 0x69 || Ox55 = 0x01
" p&&*p // avoids null pointer access

Saint Louis University

Shift Operations
m Left Shift: Xx <<y Argument x | 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> vy
= Shift bit-vector X right y positions

= Throw away extra bits on right
= |ogical shift << 3 00010000

Log.>> 2 | 00011000

Arith. >> 21 00011000

Argument x| 10100010

= Fill with 0’s on left Log.>> 2 | 00101000
= Arithmetic shift

= Replicate most significant bit on right

Arith.>> 2111101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bitwise-NOT: One’s Complement

m Bitwise-NOT operation: —
= Bitwise-NOT of X is ~X
= Flip all bits of X to compute ~X

= flipeach1toO
= flipeachOto1l

m Complement
= Givenx == 10011101

= Flip bits (one’s complement):

Negation: Two’s Complement

m Negate a number by taking 2’s Complement
= Flip bits (one’s complement) and add 1
~X + 1 == -X

m Negation (Two’s Complement):
= Givenx == 10011101

= Flip bits (one’s complement):

= Add 1: + 1

10

Saint Louis University

Complement & Increment Examples

X =15213
Decimal [Hex Binary

X 15213 3B 60| 00111011 01101101

~X -15214(C4 92| 11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213(C4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 0| OO0 00| 00000000 00000000

~0 1| FF FF| 111111211 11111111

~0+1 0| OO0 00| 00000000 00000000

1

Saint Louis University

Unsighed Addition

Operands: w bits u 2o
+ V oo

True Sum: w+1 bits U+ v —

Discard Carry: w bits v o0

m Addition Operation
= Carry output dropped at end of addition
= Valid ONLY if true sum is within w-bit range

m Example #1:

1 1
OILILIOIOOILION - %50 ygig in g-pit
+ 0[1fo[oj1]0j1]0 7410 unsigned range
0] [T[o[T[o[i[iolo] 172:

12

Saint Louis University

Unsighed Addition

m Example #2:

1 1 111
110
OLL[110I]1]1]0 " Not Valid in 8-bit
F 1{110|01]011]0 20240 unsigned range
1] [o[o[a[a[Z[o[o]o /56{ (312is > 255)
m Example #3:
1 11 111 1 1
0]/0{1]0]0f1]1]|1{0|1|1{0]0O0]1]|O 10082,y not Valid in 16-bit
+ 1{1]1]0{1]0{1]0]0{1]0]0{1]0{1]0 59978,, unsigned range
70060 is > 65535
1| [0]0]0{1]0]0{0j1|1{0]1{0|1]1{0]O }%o (.)

13

Saint Louis University

Visualizing (Mathematical) Integer Addition

m Integer Addition

= 4-bit integers u, v

True Sum

" Compute true sum

= Values increase linearly
with uand v

" Forms planar surface

14

Visualizing Unsigned Addition
= Wraps Around Overflow

" |f true sum > 2% \

= At most once

True Sum
2w+1-

Overflow
A

o *+

Modular Sum

15

Saint Louis University

Visualizing Signed Addition

NegOver

m Values
= 4-bit two’s comp.

= Range from -8 to +7

m Wraps Around
= |f sum=>2w?
= Becomes negative
= At most once
= |f sum <—2w-1
= Becomes positive
= At most once

u 4 _ PosOver

16

Signed Addition

m Example #1:

0

NI [=1H (=] 0

o
RN
O] O]

m Example #2:

1

ol Ik |IO] -

Saint Louis University

Note: Same bytes as for Ex #1 and Ex #2
in unsigned integer addition, but
now interpreted as 8-bit signed integers

98,

110,
54,

Not Valid in 8-bit
signed range
(172 > 127)

Valid in 8-bit
signed range
(-128 < 56<127)

17

Saint Louis University

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2X
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

18

Saint Louis University

Integer C Puzzles

e x<0 = ((x*2) <0)
e ux>=0
e X&7== = (x<<30)<0
e ux>-1
¢ X>y = -X<-y
e X*x>=0
Initialization « x>08&&y>0 = x+y>0
- e x>=0 = Xx<=0
int x = foo();
e x<=(= =x>=
inty = bar(); o (X|-x)>>31==-
unsigned ux = x; e ux>>3==ux/8
unsigned uy = y; © x>>3==x/8

e x&(x-1)!=0

19

