
Carnegie Mellon

1

Saint Louis University

Data Representation in Memory

CSCI 224 / ECE 317: Computer Architecture

Instructor:

Prof. Jason Fritts

Slides adapted from Bryant & O’Hallaron’s slides

Carnegie Mellon

2

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

3

Saint Louis University

Byte-Oriented Memory Organization

� Byte-Addressable Memory

� Conceptually a very large array of bytes

� Each byte has a unique address

� Processor width determines address range:

� 32-bit processor has 232 unique addresses: 4GB max

– 0x00000000 to 0xffffffff

� 64-bit processor has 264 unique addresses: ~ 1.8x1019 bytes max

– 0x0000000000000000 to 0xffffffffffffffff

� Memory implemented with hierarchy of different memory types

� OS provides virtual address space private to particular “process”

� virtual memory to be discussed later…

• • •

Carnegie Mellon

4

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

5

Saint Louis University

Representing Voltage Levels as Binary Values

0.0V

0.5V

2.8V

3.3V

0 1 0

� Digital transistors operate in high and low voltage ranges

� Voltage Range dictates Binary Value on wire

� high voltage range (e.g. 2.8V to 3.3V) is a logic 1

� low voltage range (e.g. 0.0V to 0.5V) is a logic 0

� voltages in between are indefinite values

Carnegie Mellon

6

Saint Louis University

Bits & Bytes

� Transistors have two states, so computers use bits

� “bit” is a base-2 digit

� {L, H} => {0, 1}

� Single bit offers limited range, so grouped in bytes

� 1 byte = 8 bits

� a single datum may use multiple bytes

� Data representation 101:

� Given N bits, can represent 2N unique values

Carnegie Mellon

7

Saint Louis University

Encoding Byte Values

� Processors generally use multiples of Bytes

� common sizes: 1, 2, 4, 8, or 16 bytes

� Intel data names:

� Byte 1 byte (8 bits)

� Word 2 bytes (16 bits)

� Double word 4 bytes (32 bits)

� Quad word 8 bytes (64 bits)

Unfortunately, most processor architectures

call 2 bytes a ‘halfword’, 4 bytes a ‘word’, etc.,

so we’ll often use C data names instead

(but these vary in size too… /sigh)

Carnegie Mellon

8

Saint Louis University

C Data Types

C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer (addr) 4 4 8

32-bit 64-bit

key

differences

Carnegie Mellon

9

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

10

Saint Louis University

Encoding Byte Values

� 1 Byte = 8 bits

� Binary: 000000002 to 111111112

� A byte value can be interpreted in many ways!

� depends upon how it’s used

� For example, consider byte with: 010101012

� as text: ‘U’

� as integer: 8510

� as IA32 instruction: pushl %ebp

� part of an address or real number

� a medium gray pixel in a gray-scale image

� could be interpreted MANY other ways…

Carnegie Mellon

11

Saint Louis University

Encoding Byte Values

� Different syntaxes for a byte

� Binary: 000000002 to 111111112

� Decimal: 010 to 25510

� Hexadecimal: 0016 to FF16

� Base-16 number representation

� Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

� in C/C++ programming languages, D316 written as either

– 0xD3

– 0xd3

Carnegie Mellon

12

Saint Louis University

Decimal vs Binary vs Hexadecimal

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Carnegie Mellon

13

Saint Louis University

Binary and Hexadecimal Equivalence

� Problem with binary – Hard to gauge size of binary numbers

� e.g. approx. how big is: 10100111010100010111010112 ?

� Would be nice if native computer base was decimal: 21,930,731

� but a decimal digit requires 3.322 bits… won’t work

� Need a larger base equivalent to binary, such that

� for equivalence, R and x must be integers – then 1 digit in R equals x bits

� equivalence allows direct conversion between representations

� two options closest to decimal:

� octal:

� hexadecimal:

�� = ��

�� = ��
��� = �	

Carnegie Mellon

14

Saint Louis University

Binary and Hexadecimal Equivalence

� Octal or Hexadecimal?

� binary : 10100111010100010111010112

� octal: 1235213538

� hexadecimal number: 14EA2EB16

� decimal: 21930731

� Octal a little closer in size to decimal, BUT…

� How many base-R digits per byte?

� Octal: 8/3 = 2.67 octal digits per byte -- BAD

� Hex: 8/4 = 2 hex digits per byte -- GOOD

Hexadecimal wins: 1 hex digit ⇔ 4 bits

Carnegie Mellon

15

Saint Louis University

Convert Between Binary and Hex

� Convert Hexadecimal to Binary

� Simply replace each hex digit with its equivalent 4-bit binary sequence

� Example: 6 D 1 9 F 3 C16

� Convert Binary to Hexadecimal

� Starting from the radix point, replace each sequence of 4 bits with the

equivalent hexadecimal digit

� Example: 1011001000110101110101100010100112

0110 1101 0001 1001 1111 0011 11002

1 6 4 6 B A C 5 316

Carnegie Mellon

16

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

17

Saint Louis University

Unsigned Integers – Binary

� Computers store Unsigned Integer numbers in Binary (base-2)

� Binary numbers use place valuation notation, just like decimal

� Decimal value of n-bit unsigned binary number:

0 1 1 1 0 1 0 1

27 26 25 24 23 22 21 20

��
��� = ��� ∗ ��
���

���

��
��� = � ∗ �� + � ∗ �� + � ∗ �� + � ∗ �	 + � ∗ �� + � ∗ �� + � ∗ �� + � ∗ ��
= �� + �� + �	 + �� + ��
= �	 + �� + �� + 	 + �		 = �����

Carnegie Mellon

18

Saint Louis University

Unsigned Integers – Base-R

� Convert Base-R to Decimal

� Place value notation can similarly determine decimal value of any base, R

� Decimal value of n-digit base r number:

� Example:

��
��� = ��� ∗ ��
���

���

��
��� = � ∗ �� + � ∗ �� + � ∗ ��
= � ∗ �	 + � ∗ � + � ∗ �
= ��� + � + �		 = �����

���� =	?	��

Carnegie Mellon

19

Saint Louis University

Unsigned Integers – Hexadecimal

� Commonly used for converting hexadecimal numbers

� Hexadecimal number is an “equivalent” representation to binary, so

often need to determine decimal value of a hex number

� Decimal value for n-digit hexadecimal (base 16) number:

� Example:

��
��� = ��� ∗ ���
���

���

��
��� = � ∗ ��� + �	 ∗ ��� + 	 ∗ ���
= � ∗ ��� + �	 ∗ �� + 	 ∗ �
= ���	 + ��	 + 			 = ������

��	�� =	?	��

Carnegie Mellon

20

Saint Louis University

Unsigned Integers – Convert Decimal to Base-R

� Also need to convert decimal numbers to desired base

� Algorithm for converting unsigned Decimal to Base-R

a) Assign decimal number to NUM

b) Divide NUM by R

� Save remainder REM as next least significant digit

� Assign quotient Q as new NUM

c) Repeat step b) until quotient Q is zero

� Example: ���� =	?	�
NUM R REMQ

		��		/		�			 	→		��				�				�	
		��		/		�			 	→				�					�						
				�		/			�			 	→				�					�				�	

= �	��

least significant digit

most significant digit

Carnegie Mellon

21

Saint Louis University

Unsigned Integers – Convert Decimal to Binary

� Example with Unsigned Binary: ���� =	?	�

NUM R REMQ

		��		/		�			 	→		��				�				�	
		��		/		�			 	→		��				�				�	 = �������

least significant digit

most significant digit

		��		/		�			 	→				�					�				�	
				�			/		�			 	→				�					�				�	
				�			/		�			 	→				�					�				�	
				�			/		�			 	→				�					�				�	

Carnegie Mellon

22

Saint Louis University

Unsigned Integers – Convert Decimal to Hexadecimal

� Example with Unsigned Hexadecimal: 	���� =	?	��

NUM R REMQ

	��		/		��			 	→		��				�					�	 = � ���

least significant digit

most significant digit

		��		/		��			 	→				�					�			��	
			�			/			��			 	→				�					�					�	

Carnegie Mellon

23

Saint Louis University

Unsigned Integers – Ranges

� Range of Unsigned binary numbers based on number of bits

� Given representation with n bits, min value is always sequence

� 0....0000 = 0

� Given representation with n bits, max value is always sequence

� 1....1111 = 2n – 1

� So, ranges are:

� unsigned char:

� unsigned short:

� unsigned int:

1 1 ⋅ ⋅ ⋅ 1 1 1 1

2n-1 2n-2 23 22 21 20
= ���

���

���
					 = �� − �

�	 → 	���								 �� − �

�	 → ��, ���								 ��� − �

�	 → 	, ��	, ���, ���									 ��� − �

Carnegie Mellon

24

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

25

Saint Louis University

Signed Integers – Binary

� Signed Binary Integers converts half of range as negative

� Signed representation identical, except for most significant bit

� For signed binary, most significant bit indicates sign

� 0 for nonnegative

� 1 for negative

� Must know number of bits for signed representation

-27 26 25 24 23 22 21 20

Signed Integer representation:

27 26 25 24 23 22 21 20

Unsigned Integer representation:

Place value of

most significant bit

is negative

for signed binary

Carnegie Mellon

26

Saint Louis University

Signed Integers – Binary

� Decimal value of n-bit signed binary number:

� Positive (in-range) numbers have same representation:

��
��� = −���� ∗ ���� +��� ∗ ��
���

���

0 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 0 1 0 0 1

27 26 25 24 23 22 21 20

Unsigned Integer representation:

= �����

= �����

Carnegie Mellon

27

Saint Louis University

Signed Integers – Binary

� Only when most significant bit set does value change

� Difference between unsigned and signed integer values is 2N

0 1 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 1 0 1 0 0 1

27 26 25 24 23 22 21 20

Unsigned Integer representation:

= ���
+ �����
= �����

= ���
− �����
= −����

Carnegie Mellon

28

Saint Louis University

Signed Integers – Ranges

� Range of Signed binary numbers:

� Given representation with n bits, min value is always sequence

� 100....0000 = – 2n-1

� Given representation with n bits, max value is always sequence

� 011....1111 = 2n-1 – 1

� So, ranges are:

C data type # bits Unsigned range Signed range

char 8 0 → 255 -128 → 127

short 16 0 → 65,535 -32,768 → 32,767

int 32 0 → 4,294,967,295 -2,147,483,648 → 2,147,483,647

Carnegie Mellon

29

Saint Louis University

Signed Integers – Convert to/from Decimal

� Convert Signed Binary Integer to Decimal

� Easy – just use place value notation

� two examples given on last two slides

� Convert Decimal to Signed Binary Integer

� MUST know number of bits in signed representation

� Algorithm:

a) Convert magnitude (abs val) of decimal number to unsigned binary

b) Decimal number originally negative?

– If positive, conversion is done

– If negative, perform negation on answer from part a)

» zero extend answer from a) to N bits (size of signed repr)

» negate: flip bits and add 1

Carnegie Mellon

30

Saint Louis University

Signed Integers – Convert Decimal to Base-R

� Example:

� A)

−����=	?	��#�$	%�&��'

NUM R REMQ

		��		/		�			 	→		��				�				�	
		��		/		�			 	→				�					�				�	
				�		/			�			 	→										�				�	

= �������

least significant bit

most significant bit

−���� =	?	�

							/			�			 	→				�					�				�	
				�		/			�			 	→				�					�				�	
				�		/			�			 	→				�					�				�	

Carnegie Mellon

31

Saint Louis University

Signed Integers – Convert Decimal to Base-R

� Example:

� B) -3710 was negative, so perform negation

� zero extend 100101 to 8 bits

� negation

– flip bits:

– add 1:

−����=	?	��#�$	%�&��'

= ���������
���������

������� 		→ 			���������

���������

+														��

���������

Can validate answer using

place value notation

Carnegie Mellon

32

Saint Louis University

Signed Integers – Convert Decimal to Base-R

� Example:

� A)

���� =	?	��#�$	%�&��'

NUM R REMQ

		��		/		�			 	→		��				�				�	
		��		/		�			 	→				�					�				�	
				�		/			�			 	→										�				�	

= ��������

least significant bit

most significant bit

���� =	?	�

							/			�			 	→				�					�				�	
				�		/			�			 	→				�					�				�	
				�		/			�			 	→				�					�				�	

		��		/		�			 	→		��				�				�	

Carnegie Mellon

33

Saint Louis University

Signed Integers – Convert Decimal to Base-R

� Example:

� B) 6710 was positive, so done

���� =	?	��#�$	%�&��'

= ��������

Can validate answer using

place value notation

Carnegie Mellon

34

Saint Louis University

Signed Integers – Convert Decimal to Base-R

� Be careful of range!

� Example:

� A)

� B) -18310 was negative, so perform negation

� zero extend 10110111 to 8 bits // already done

� negation

– flip bits:

– add 1:

−�����=	?	��#�$	%�&��'
= ���������−����� =	?	�

���������

���������
+														��
��������� = ����

not -18310… WRONG!

-18310 is not in valid range

for 8-bit signed

Carnegie Mellon

35

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

36

Saint Louis University

char S[6] = "18243";

Representing Strings

� Strings in C

� Represented by array of characters

� Each character encoded in ASCII format

� Standard 7-bit encoding of character set

� Character “0” has code 0x30

� String should be null-terminated

� Final character = 0

� ASCII characters organized such that:

� Numeric characters sequentially increase from 0x30

– Digit i has code 0x30+i

� Alphabetic characters sequentially increase in order

– Uppercase chars ‘A’ to ‘Z’ are 0x41 to 0x5A

– Lowercase chars ‘A’ to ‘Z’ are 0x61 to 0x7A

� Control characters, like <RET>, <TAB>, <BKSPC>, are 0x00 to 0x1A

Intel / Linux

0x31

0x38

0x32

0x34

0x33

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null

term

Carnegie Mellon

37

Saint Louis University

Representing Strings

� Limitations of ASCII

� 7-bit encoding limits set of characters to 27 = 128

� 8-bit extended ASCII exists, but still only 28 = 256 chars

� Unable to represent most other languages in ASCII

� Answer: Unicode

� first 128 characters are ASCII

� i.e. 2-byte Unicode for ‘4’: 0x34 -> 0x0034

� i.e. 4-byte Unicode for ‘T’: 0x54 -> 0x00000054

� UTF-8: 1-byte version // commonly used

� UTF-16: 2-byte version // commonly used

� allows 216 = 65,536 unique chars

� UTF-32: 4-byte version

� allows 232 = ~4 billion unique characters

� Unicode used in many more recent languages, like Java and Python

UTF-16 on Intel

0x31

0x00

0x38

0x00

0x32

0x00

0x34

0x00

0x33

0x00

0x00

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null

term

Carnegie Mellon

38

Saint Louis University

Data Representation in Memory

� Basic memory organization

� Bits & Bytes – basic units of Storage in computers

� Representing information in binary and hexadecimal

� Representing Integers

� Unsigned integers

� Signed integers

� Representing Text

� Representing Pointers

Carnegie Mellon

39

Saint Louis University

Representing Pointers

Different compilers & machines assign different locations to objects

int B = -15213;
int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

D4

F8

FF

BF

0C

89

EC

FF

FF

7F

00

00

