
1

Saint Louis University

Slides adapted from Bryant & O’Hallaron’s slides

Course Overview

CSCI 224 / ECE 317: Computer Architecture

Instructors:

Prof. Jason Fritts

2

Overview

� Course theme

� Five realities

� Logistics

Saint Louis University

3

Course Theme:

Abstraction Is Good But Don’t Forget Reality

� Most CS and CE courses emphasize abstraction

� Abstract data types

� Asymptotic analysis

� These abstractions have limits

� Especially in the presence of bugs

� Need to understand details of underlying implementations

� Useful outcomes

� Become more effective programmers

� Able to find and eliminate bugs efficiently

� Able to understand and tune for program performance

� Prepare for later “systems” classes in CS & ECE

� Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems

Saint Louis University

4

Great Reality #1:

Ints are not Integers, Floats are not Reals
� Example 1: Is x2 ≥ 0?

� Float’s: Yes!

� Int’s:

� 40000 * 40000 �1600000000

� 50000 * 50000 �??

� Example 2: Is (x + y) + z = x + (y + z)?

� Unsigned & Signed Int’s: Yes!

� Float’s:

� (1e20 + -1e20) + 3.14 --> 3.14

� 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

Saint Louis University

5

Code Security Example

/* Kernel memory region holding user-accessible dat a */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and max len */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

� Similar to code found in FreeBSD’s implementation of

getpeername

� There are legions of smart people trying to find vulnerabilities

in programs

Saint Louis University

6

Typical Usage

/* Kernel memory region holding user-accessible dat a */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and max len */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

Saint Louis University

7

Malicious Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, - MSIZE);
. . .

}

/* Kernel memory region holding user-accessible dat a */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to u ser buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxl en */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

Saint Louis University

8

Computer Arithmetic

� Does not generate random values

� Arithmetic operations have important mathematical properties

� Cannot assume all “usual” mathematical properties

� Due to finiteness of representations

� Integer operations satisfy “ring” properties

� Commutativity, associativity, distributivity

� Floating point operations satisfy “ordering” properties

� Monotonicity, values of signs

� Observation

� Need to understand which abstractions apply in which contexts

� Important issues for compiler writers and serious application programmers

Saint Louis University

9

Great Reality #2:

You’ve Got to Know Assembly
� Chances are, you’ll never write programs in assembly

� Compilers are much better & more patient than you are

� But: Assembly is key to understanding machine-level execution

� Behavior of programs in presence of bugs

� High-level language models break down

� Tuning program performance

� Understand optimizations done / not done by the compiler

� Understanding sources of program inefficiency

� Implementing system software

� Compiler has machine code as target

� Operating systems must manage process state

� Creating / fighting malware

� x86 assembly is the language of choice!

Saint Louis University

10

Assembly Code Example

� Time Stamp Counter

� Special 64-bit register in Intel-compatible machines

� Incremented every clock cycle

� Read with rdtsc instruction

� Application

� Measure time (in clock cycles) required by procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

Saint Louis University

11

Code to Read Counter

� Write small amount of assembly code using GCC’s asm facility

� Inserts assembly code into machine code generated by

compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

Saint Louis University

12

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

� Memory is not unbounded

� It must be allocated and managed

� Many applications are memory dominated

� Memory referencing bugs especially pernicious

� Effects are distant in both time and space

� Memory performance is not uniform

� Cache and virtual memory effects can greatly affect program performance

� Adapting program to characteristics of memory system can lead to major

speed improvements

Saint Louis University

13

Memory Referencing Bug Example

double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) � 3.14
fun(1) � 3.14
fun(2) � 3.1399998664856
fun(3) � 2.00000061035156
fun(4) � 3.14, then segmentation fault

� Result is architecture specific

Saint Louis University

14

Memory Referencing Bug Example

double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) � 3.14
fun(1) � 3.14
fun(2) � 3.1399998664856
fun(3) � 2.00000061035156
fun(4) � 3.14, then segmentation fault

Location accessed by

fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

Saint Louis University

15

Memory Referencing Errors

� C and C++ do not provide any memory protection

� Out of bounds array references

� Invalid pointer values

� Abuses of malloc/free

� Can lead to nasty bugs

� Whether or not bug has any effect depends on system and compiler

� Action at a distance

� Corrupted object logically unrelated to one being accessed

� Effect of bug may be first observed long after it is generated

� How can I deal with this?

� Program in Java, Ruby or ML

� Understand what possible interactions may occur

� Use or develop tools to detect referencing errors (e.g. Valgrind)

Saint Louis University

16

Memory System Performance Example

� Hierarchical memory organization

� Performance depends on access patterns

� Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower

(Pentium 4)

Saint Louis University

17

The Memory Mountain

64
M

8M

1M 12
8K

16
K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

s3
2

Size (bytes)

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

Saint Louis University

18

Great Reality #4: There’s more to

performance than asymptotic complexity

� Constant factors matter too!

� And even exact op count does not predict performance

� Easily see 10:1 performance range depending on how code written

� Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

� Must understand system to optimize performance

� How programs compiled and executed

� How to measure program performance and identify bottlenecks

� How to improve performance without destroying code modularity and

generality

Saint Louis University

19

Example Matrix Multiplication

� Standard desktop computer, vendor compiler, using optimization flags

� Both implementations have exactly the same operations count (2n3)

� What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

Saint Louis University

20

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

� Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice

� Effect: fewer register spills, L1/L2 cache misses, and TLB misses

Saint Louis University

21

Great Reality #5:

Computers do more than execute programs

� They need to get data in and out

� I/O system critical to program reliability and performance

� They communicate with each other over networks

� Many system-level issues arise in presence of network

� Concurrent operations by autonomous processes

� Coping with unreliable media

� Cross platform compatibility

� Complex performance issues

Saint Louis University

22

Course Perspective

� Most Systems Courses are Builder-Centric

� Computer Architecture

� Design pipelined processor in Verilog

� Operating Systems

� Implement large portions of operating system

� Compilers

� Write compiler for simple language

� Networking

� Implement and simulate network protocols

Saint Louis University

23

Course Perspective (Cont.)

� This Course is more Programmer-Centric

� Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer

� Enable you to

� Write programs that are more reliable and efficient

� Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

� Not just a course for dedicated hackers

� We bring out the hidden hacker in everyone

� Cover material in this course that you won’t see elsewhere

Saint Louis University

24

Course Website

� Class Website: http://cs.slu.edu/~fritts/csci224/

� Detailed class information and policies

� Full Schedule, including:

� lecture topics and code examples

� assignments

� exam dates

� All assignments posted on website

� Some lecture slides posted on website

� SLU Blackboard

� Blackboard is not used for this course

Saint Louis University

25

Textbook

� Randal E. Bryant and David R. O’Hallaron,

� “Computer Systems: A Programmer’s Perspective”, Second Edition

(CS:APP2e), Prentice Hall, 2011

� Textbook’s website: http://csapp.cs.cmu.edu

� Recommend getting a hardcopy, since exams are often open book & notes

� C reference textbook

� “C Programming”

� a free online reference text for C programming, that may prove beneficial

for those who haven’t used C (or C++) before

Saint Louis University

26

Attendance and Class Guidelines

� Attendance is at students’ discretion, but highly recommended

� Questions and Participation highly encouraged

� If you have a question or need clarification, it’s very likely that other

students will likewise benefit from your question

� Laptops / computers may be used during class

� But NOT during exams

Saint Louis University

27

Policies: Grading

� Exams (50%)

� mid-semester exams: 15% each

� final 20%

� Assignments (45%): approximately 7-9 assignments

� Class Participation (5%)

� for participation in hands-on work during class

� Final grades are based on a class curve

� Late Policy:

� 10% penalty for first weekday late

� 25% penalty for up to a week late

� assignments over a week late accepted only on instructor’s discretion

Saint Louis University

28

Policy for Collaborating on Assignments

� Collaboration allowed, even encouraged, PROVIDED that:

� you only discuss the problem, not the solution

� students may help guide each other in the process of solving the problem,

BUT each student MUST turn in their own answer

� students MUST indicate who they collaborated with on their cover sheet

Saint Louis University

29

Cheating

� What is cheating?

� Sharing code or answers: copying, retyping, looking at, or supplying a file

� Detailed coaching: helping your friend to write code or an answer, line by line

� Copying code from previous course or from elsewhere on WWW

� only allowed to use code supplied in class or on course website

� What is NOT cheating?

� Explaining how to use systems or tools

� Helping others understand high-level design issues or process for solving a problem

� Penalty for cheating:

� Ranges, based on severity, from zero on assignment to being sent before Academic

Honesty Committee

� Records saved for all incidents of cheating

� Detection of cheating:

� Instructor is (unfortunately) extremely experienced at detecting cheating

Saint Louis University

30

Topic: Programs and Data

� Topics

� Assembly (and machine) language vs. High-level languagues (HLLs)

� Instruction set architecture

� CPU (core)

� register file

� processing units (ALU, FPU, etc.)

� Types of instructions

� arithmetic

� logical

� shifts and bit manipulation

� memory

� compares

� branches and jumps

� procedure calls & returns

� Representation of variables, arrays and data structures

Saint Louis University

31

Topic: Computer Architecture

� Topics

� Fundamentals of Logic Design (gates & circuits)

� Processor Organization

� CPU (core) Organization

� Fetch-Decode-Execute Cycle and Datapath Flow

� Sequential (single-cycle) Datapath

� Pipelined Datapath

� purpose / benefit

� data and control dependencies

� hazards

� bypassing / forwarding

� branch prediction

Saint Louis University

32

Topic: Memory and the Memory Hierarchy

� Topics

� Data representation

� Memory technology (disk vs. RAM vs. ROM vs. cache)

� Loads & Stores (reads & writes)

� Physical vs. Virtual memory

� page tables, address translation, and TLB

� how memory organized within a process

– global vs. heap vs. stack memory

� Cache memory

� purpose / benefit

� locality

� how it works

Saint Louis University

33

Topic: Performance and Optimization

� Topics

� How simple modifications in assembly / machine code can dramatically

affect execution time

� Co-optimization (control and data)

� Measuring time on a computer

� Related to architecture, compilers, and OS

Saint Louis University

34

Welcome

and Enjoy!

Saint Louis University

