
1

Saint Louis University

Machine-Level Programming I –

Introduction

CSCI 224 / ECE 317: Computer Architecture

Instructor:

Prof. Jason Fritts

Slides adapted from Bryant & O’Hallaron’s slides

2

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Registers and Operands

� mov instruction

� Intro to x86-64

� AMD was first!

3

Saint Louis University

Hardware vs. Software Architecture

� There are two parts to the computer architecture of a
processor:

� Software architecture

� commonly know as the Architecture or Instruction Set Architecture (ISA)

� Hardware architecture

� commonly know as the Microarchitecture

� The (software) architecture includes all aspects of the
design that are visible to programmers

� The microarchitecture refers to one specific implementation
of a software architecture

� e.g. number of cores, processor frequency, cache sizes, instructions
supported, etc.

� the set of all independent hardware architectures for a given
software architecture is known as the processor family

� e.g. the Intel x86 family

4

Saint Louis University

CPU

Assembly Programmer’s View

� Programmer-Visible State

� PC: Program counter

� Holds address of next instruction

� Register file

� Temp storage for program data

� Condition codes

� Store status info about recent operation

� Used for conditional branching

PC
Registers

Memory

Object Code

Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition

Codes

� Memory

� Byte addressable array

� Code, user data, (some) OS data

� Includes stack used to support

procedures

5

Saint Louis University

Separation of hardware and software

� The reason for the separation of the (software) architecture
from the microarchitecture (hardware) is backwards
compatibility

� Backwards compatibility ensures:

� software written on older processors will run on newer processors (of
the same ISA)

� processor families can always utilize the latest technology by creating
new hardware architectures (for the same ISA)

� However, new microarchitectures often add to the
(software) architecture, so software written on newer
processors may not run on older processors

6

Saint Louis University

Parts of the Software Architecture

� There are 4 parts to the (software) architecture
� instruction set

� the set of available instructions and the rules for using them

� register file organization
� the number, size, and rules for using registers

� memory organization & addressing
� the organization of the memory and the rules for accessing data

� operating modes
� the various modes of execution for the processor

� there are usually at least two modes:
– user mode (for general use)

– system mode (allows access to privileged instructions
and memory)

7

Saint Louis University

Software Architecture: Instruction Set

� The Instruction Set defines

� the set of available instructions

� fundamental nature of the instructions

� simple and fast

� complex and concise

� instruction formats

� define the rules for using the instructions

� the width (in bits) of the datapath

� this defines the fundamental size of data in the CPU, including:

– the size (number of bits) for the data buses in the CPU

– the number of bits per register in the register file

– the width of the processing units

– the number of address bits for accessing memory

8

Saint Louis University

Software Architecture: Instruction Set

� There are 9 fundamental categories of instructions
� arithmetic

� these instruction perform integer arithmetic, such as add, subtract,
multiply, and negate

– Note: integer division is commonly done in software

� logical
� these instructions perform Boolean logic (AND, OR, NOT, etc.)

� relational
� these instructions perform comparisons, including

==, !=, <, >, <=, >=

� some ISAs perform comparisons in the conditional branches

� control
� these instructions enable changes in control flow, both for decision

making and modularity

� the set of control instruction includes:
– conditional branches

– unconditional jumps

– procedure calls and returns

9

Saint Louis University

Software Architecture: Instruction Set

� memory
� these instructions allow data to be read from or written to memory

� floating-point
� these instruction perform real-number operations, including add,

subtract, multiply, division, comparisons, and conversions

� shifts
� these instructions allow bits to be shifted or rotated left or right

� bit manipulation
� these instructions allow data bits to be set or cleared

� some ISAs do not provide these, since they can be done via logic
instructions

� system instructions
� specialized instructions for system control purposes, such as

– STOPor HALT (stop execution)

– cache hints

– interrupt handling

� some of these instructions are privileged, requiring system mode

10

Saint Louis University

Software Architecture: Register File

� The Register File is a small, fast temporary storage area in

the processor’s CPU

� it serves as the primary place for holding data values currently

being operated upon by the CPU

� The organization of the register file determines

� the number of registers

� a large number of registers is desirable, but having too many will

negatively impact processor speed

� the number of bits per register

� this is equivalent to the width of the datapath

� the purpose of each register

� ideally, most registers should be general-purpose

� however, some registers serve specific purposes

11

Saint Louis University

Purpose of Register File

� Registers are faster to access than memory

� Operating on memory data requires loads and stores

� More instructions to be executed

� Compilers store values in registers whenever possible

� Only spill to memory for less frequently used variables

� Register optimization is important!

12

Saint Louis University

Software Architecture: Memory

� The Memory Organization & Addressing defines

� how memory is organized in the architecture

� where data and program memory are unified or separate

� the amount of addressable memory

– usually determined by the datapath width

� the number of bytes per address

– most processors are byte-addressable, so each byte has a unique addr

� whether it employs virtual memory, or just physical memory

– virtual memory is usually required in complex computer systems,

like desktops, laptops, servers, tablets, smart phones, etc.

– simpler systems use embedded processors with only physical memory

� rules identifying how instructions access data in memory

� what instructions may access memory (usually only loads, stores)

� what addressing modes are supported

� the ordering and alignment rules for multi-byte primitive data types

13

Saint Louis University

Software Architecture: Operating Modes

� Operating Modes define the processor’s modes of execution

� The ISA typically supports at least two operating modes

� user mode

� this is the mode of execution for typical use

� system mode

� allows access to privileged instructions and memory

� aside from interrupt and exception handling, system mode is

typically only available to system programmers and administrators

� Processors also generally have hardware testing modes, but

these are usually part of the microarchitecture, not the

(software) architecture

14

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Registers

� Operands

� mov instruction

� Intro to x86-64

� AMD was first!

15

Saint Louis University

Common Architecture (ISA) Classifications:

� Concise vs. Fast: CISC vs. RISC

� CISC – Complex Instruction Set Computers

� complex instructions targeting efficient program representation

� variable-length instructions

� versatile addressing modes

� specialized instructions and registers implement complex tasks

� NOT optimized for speed – tend to be SLOW

� RISC – Reduced Instruction Set Computers

� small set of simple instructions targeting high speed implementation

� fixed-length instructions

� simple addressing modes

� many general-purpose registers

� leads to FAST hardware implementations

� but less memory efficient

16

Saint Louis University

Classifications: Unified vs. Separate Memory

� von Neumann vs. Harvard architecture

� relates to whether program and data in unified or separate memory

� von Neumann architecture

� program and data are stored in the same unified memory space

� requires only one physical memory

� allows self-modifying code

� however, code and data must share the same memory bus

� used by most general-purpose processors (e.g. Intel x86)

� Harvard architecture

� program and data are stored in separate memory spaces

� requires separate physical memory

� code and data do not share same bus, giving higher bandwidths

� often used by digital signal processors for data-intensive applications

17

Saint Louis University

Classifications: Performance vs. Specificity

� Microprocessor vs. Microcontroller

� Microprocessor

� processors designed for high-performance and flexibility in personal
computers and other general purpose applications

� architectures target high performance through a combination of
high speed and parallelism

� processor chip contains only CPU(s) and cache

� no peripherals included on-chip

� Microcontroller

� processors designed for specific purposes in embedded systems

� only need performance sufficient to needs of that application

� processor chip generally includes:

– a simple CPU

– modest amounts of RAM and (Flash) ROM

– appropriate peripherals needed for specific application

� also often need to meet low power and/or real-time requirements

18

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Registers

� Operands

� mov instruction

� Intro to x86-64

� AMD was first!

19

Saint Louis University

Intel x86 Processors

� The main software architecture for Intel is the x86 ISA
� also known as IA-32

� for 64-bit processors, it is known as x86-64

� Totally dominate laptop/desktop/server market

� Evolutionary design

� Backwards compatible back to 8086, introduced in 1978

� Added more features as time goes on

� Complex instruction set computer (CISC)

� Many different instructions with many different formats

� but, only small subset used in Linux programs

20

Saint Louis University

Intel x86 Family: Many Microarchitectures

X86-64 / Intel 64

X86-32 / IA32

X86-16 8086

286

386

486

Pentium

Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo

Core i7

IA: often redefined as latest Intel architecture

time

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4

21

Saint Louis University

Software architecture can grow

� Backward compatibility does not mean instruction set is fixed

� new instructions and functionality can be added to the software
architecture over time

� Intel added additional features over time

� Instructions to support multimedia operations (MMX, SSE)

� SIMD parallelism – same operation done across multiple data

� Instructions enabling more efficient conditional operations

x86 instruction set

22

Saint Louis University

Intel x86: Milestones & Trends
Name Date Transistors MHz

� 8086 1978 29K 5-10

� First 16-bit processor. Basis for IBM PC & DOS

� 1MB address space

� 386 1985 275K 16-33

� First 32 bit processor, referred to as IA32

� Added “flat addressing”

� Pentium 1993 3.1M 50-75

� Pentium II 1996 7.5M 233-300

� Pentium III 1999 9.5-21M 450-800

� Pentium 4F 2004 169M 3200-3800

� First 64-bit processor

� Got very hot

� Core i7 2008 731M 2667-3333

23

Saint Louis University

But IA-32 is CISC? How does it get speed?

� Hard to match RISC performance, but Intel has done just that!

….In terms of speed; less so for power

� CISC instruction set makes implementation difficult

� Hardware translates instructions to simpler micro-operations

� simple instructions: 1–to–1

� complex instructions: 1–to–many

� Micro-engine similar to RISC

� Market share makes this economically viable

� Comparable performance to RISC

� Compilers avoid CISC instructions

24

Saint Louis University

Processor Trends

� Number of transistors has continued to double every 2 years

� In 2004 – we hit the Power Wall

� Processor clock speeds started to leveled off

25

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)

vs.

Hardware Architecture (“Microarchitecture”)

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Registers

� Operands

� mov instruction

� Intro to x86-64

� AMD was first!

26

Saint Louis University

text

text

binary

binary

Compiler (gcc –S –m32)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries

(.a)

Turning C into Object Code
� Code in files p1.c p2.c

� Compile with command: gcc –O1 –m32 p1.c p2.c -o p

� Use basic optimizations (-O1)

� Put resulting binary in file p

� On 64-bit machines, specify 32-bit x86 code (-m32)

27

Saint Louis University

Compiling Into Assembly

C Code

int sum(int x, int y)
{

int t = x+y;
return t;

}

Generated IA32 Assembly

sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
popl %ebp
ret

Obtain with command:

gcc –O1 -S –m32 code.c

-S specifies compile to assembly (vs object) code, and

produces file code.s

Some compilers use

instruction “leave ”

28

Saint Louis University

Assembly Characteristics: Simple Types

� Integer data of 1, 2, or 4 bytes

� Data values

� Addresses (void* pointers)

� Floating point data of 4, 8, or 10 bytes

� No concept of aggregate types such as arrays or structures

� Just contiguously allocated bytes in memory

29

Saint Louis University

Assembly Characteristics: Operations

� Perform some operation on register or memory data

� arithmetic

� logical

� bit shift or manipulation

� comparison (relational)

� Transfer data between memory and register

� Load data from memory into register

� Store register data into memory

� Transfer control

� Unconditional jumps to/from procedures

� Conditional branches

30

Saint Louis University

Code for sum

0x401040 <sum>:
0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x5d
0xc3

Object Code

� Assembler

� Translates .s into .o

� Binary encoding of each instruction

� Nearly-complete image of executable code

� Missing linkages between code in different

files

� Linker

� Resolves references between files

� Combines with static run-time libraries

� E.g., code for malloc , printf

� Some libraries are dynamically linked

� Linking occurs when program begins

execution

• Total of 11 bytes

• Each instruction

1, 2, or 3 bytes

• Starts at address

0x401040

31

Saint Louis University

Machine Instruction Example
� C Code

� Add two signed integers

� Assembly

� Add 2 4-byte integers

� “Long” words in GCC parlance

� Same instruction whether signed

or unsigned

� Operands:

x : Register %eax

y : Memory M[%ebp+8]

t : Register %eax

– Return function value in %eax

� Object Code

� 3-byte instruction

� Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca: 03 45 08

Similar to expression:

x += y

More precisely:

int eax;

int *ebp;

eax += ebp[2]

32

Saint Louis University

Disassembled

Disassembling Object Code

� Disassembler

objdump -d p

� Useful tool for examining object code

� Analyzes bit pattern of series of instructions

� Produces approximate rendition of assembly code

� Can be run on either a.out (complete executable) or .o file

080483c4 <sum>:
80483c4: 55 push %ebp
80483c5: 89 e5 mov %esp,%ebp
80483c7: 8b 45 0c mov 0xc(%ebp),%eax
80483ca: 03 45 08 add 0x8(%ebp),%eax
80483cd: 5d pop %ebp
80483ce: c3 ret

33

Saint Louis University

Disassembled

Dump of assembler code for function sum:
0x080483c4 <sum+0>: push %ebp
0x080483c5 <sum+1>: mov %esp,%ebp
0x080483c7 <sum+3>: mov 0xc(%ebp),%eax
0x080483ca <sum+6>: add 0x8(%ebp),%eax
0x080483cd <sum+9>: pop %ebp
0x080483ce <sum+10>: ret

Alternate Disassembly

� Within gdb Debugger

gdb p

disassemble sum

� Disassemble procedure

x/11xb sum

� Examine the 11 bytes starting at sum

Object

0x401040:
0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x5d
0xc3

34

Saint Louis University

What Can be Disassembled?

� Anything that can be interpreted as executable code

� Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

35

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Common instructions

� Registers, Operands, and mov instruction

� Addressing modes

� Intro to x86-64

� AMD was first!

36

Saint Louis University

Typical Instructions in Intel x86

� Arithmetic
� add, sub, neg, imul, div, inc, dec, leal, …

� Logical (bit-wise Boolean)
� and, or, xor, not

� Relational
� cmp, test, sete, …

� Control
� je, jle, jg, jb, jmp, call, ret, …

� Moves & Memory Access
� mov, push, pop, movswl, movzbl, cmov, …
� nearly all x86 instructions can access memory

� Shifts
� shr, sar, shl, sal (same as shl)

� Floating-point
� fld, fadd, fsub, fxch, addsd, movss, cvt…, ucom…
� float-point change completely with x86-64

37

Saint Louis University

CISC Instructions: Variable-Length

38

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)

vs.

Hardware Architecture (“Microarchitecture”)

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Common instructions

� Registers, Operands, and mov instruction

� Addressing modes

� Intro to x86-64

� AMD was first!

39

Saint Louis University

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers

(backwards compatibility)

g
e

n
e

ra
l

p
u

rp
o

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin

(mostly obsolete)

40

Saint Louis University

Moving Data: IA32

� Moving Data

movl Source, Dest

� Operand Types

� Immediate: Constant integer data

� example: $0x400 , $-533

� like C constant, but prefixed with ‘$’

� encoded with 1, 2, or 4 bytes

� Register: One of 8 integer registers

� example: %eax, %edx

� but %esp and %ebp reserved for special use

� others have special uses in particular situations

� Memory: 4 consecutive bytes of memory at address given by register

� simplest example: (%eax)

� various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

41

Saint Louis University

movl Operand Combinations

Cannot do memory-memory transfer with a single instruction

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src, Dest

42

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)

vs.

Hardware Architecture (“Microarchitecture”)

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Common instructions

� Registers, Operands, and mov instruction

� Addressing modes

� Intro to x86-64

� AMD was first!

43

Saint Louis University

Simple Memory Addressing Modes

� Normal:

(R) Mem[Reg[R]]

� Register R specifies memory address

movl (%ecx),%eax

� Displacement:

D(R) Mem[Reg[R]+D]

� Register R specifies start of memory region

� Constant displacement D specifies offset

movl 8(%ebp),%edx

44

Saint Louis University

Using Simple Addressing Modes

void swap(int *xp, int *yp)
{

int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

} Body

Set

Up

Finish

swap:

pushl %ebx

movl 8(%esp), %edx
movl 12(%esp), %eax
movl (%edx), %ecx
movl (%eax), %ebx
movl %ebx, (%edx)
movl %ecx, (%eax)

popl %ebx
ret

45

Saint Louis University

Using Simple Addressing Modes

void swap(int *xp, int *yp)
{

int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:

pushl %ebx

movl 8(%esp), %edx
movl 12(%esp), %eax
movl (%edx), %ecx
movl (%eax), %ebx
movl %ebx, (%edx)
movl %ecx, (%eax)

popl %ebx
ret

Body

Set

Up

Finish

46

Saint Louis University

Understanding Swap

void swap(int *xp, int *yp)
{

int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

Stack

(in memory)

Register Value

%edx xp

%ecx yp

%ebx t0

%eax t1

yp

xp

Rtn adr

Old %ebx %esp0

4

8

12

Offset

•

•

•

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

47

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

48

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104
movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

0x124

49

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

0x120

50

Saint Louis University

456

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

123

0x104

0x120

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

123

51

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

123
Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x124

123

0x104

456

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

456

52

Saint Louis University

456

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

0x120

0x124

123

456

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

456

53

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

4

8

12

Offset

456
Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

0x120

0x124

123

456

movl 8(%esp), %edx # edx = xp
movl 12(%esp), %eax # eax = yp
movl (%edx), %ecx # ecx = *xp (t0)
movl (%eax), %ebx # ebx = *yp (t1)
movl %ebx, (%edx) # *xp = t1
movl %ecx, (%eax) # *yp = t0

123

54

Saint Louis University

Complete Memory Addressing Modes

� Most General Form

D(Rb,Ri,S) Mem[Reg[Rb] + S * Reg[Ri] + D]

� D: Constant “displacement” 1, 2, or 4 bytes

� Rb: Base register: Any of 8 integer registers

� Ri: Index register: Any, except for %esp (likely not %ebpeither)

� S: Scale: 1, 2, 4, or 8 (why these numbers?)

� Special Cases

(Rb,Ri) Mem[Reg[Rb] + Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb] + Reg[Ri] + D]

(Rb,Ri,S) Mem[Reg[Rb]+ S * Reg[Ri]]

55

Saint Louis University

Basic x86 Addressing Modes

� Memory addressing modes

� Address in register

� Address = Rbase + displacement

� Address = Rbase + Rindex

� Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

� Address = Rbase + 2scale × Rindex + displacement

56

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Common instructions

� Registers, Operands, and mov instruction

� Addressing modes

� Intro to x86-64

� AMD was first!

57

Saint Louis University

AMD created first 64-bit version of x86

� Historically

�AMD has followed just behind Intel

�A little bit slower, a lot cheaper

� 2003, developed 64-bit version of x86: x86-64

�Recruited top circuit designers from DEC and other diminishing companies

�Built Opteron: tough competitor to Pentium 4

58

Saint Louis University

Intel’s 64-Bit

� Intel Attempted Radical Shift from IA32 to IA64

� Totally different architecture (Itanium)

� Executes IA32 code only as legacy

� Performance disappointing

� 2003: AMD Stepped in with Evolutionary Solution

� Originally called x86-64 (now called AMD64)

� 2004: Intel Announces their 64-bit extension to IA32

� Originally called EMT64 (now called Intel 64)

� Almost identical to x86-64!

� Collectively known as x86-64

� minor differences between the two

59

Saint Louis University

Data Representations: IA32 vs. x86-64

� Sizes of C Objects (in bytes)

C Data Type Intel IA32 x86-64

� unsigned 4 4

� int 4 4

� long int 4 8

� char 1 1

� short 2 2

� float 4 4

� double 8 8

� long double 10/12 16

� pointer (e.g. char *) 4 8

60

Saint Louis University

x86-64 Integer Registers

� Extend existing registers. Add 8 new ones.

� Make %ebp/%rbp general purpose

%rsp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

61

Saint Louis University

New Instructions for 64-bit Operands

� Long word l (4 Bytes) ↔ Quad word q (8 Bytes)

� New instructions:

� movl ➙movq

� addl ➙ addq

� sall ➙ salq

� etc.

� 32-bit instructions that generate 32-bit results

� Set higher order bits of destination register to 0

� Example: addl

62

Saint Louis University

32-bit code for int swap

void swap(int *xp, int *yp)
{

int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}
Body

Set

Up

Finish

swap:

pushl %ebx

movl 8(%esp), %edx
movl 12(%esp), %eax
movl (%edx), %ecx
movl (%eax), %ebx
movl %ebx, (%edx)
movl %ecx, (%eax)

popl %ebx
ret

63

Saint Louis University

64-bit code for int swap

� Operands passed in registers (why useful?)

� First input arg (xp) in %rdi , second input arg (yp) in %rsi

� 64-bit pointers

� No stack operations required

� 32-bit int s held temporarily in %eaxand %edx

void swap(int *xp, int *yp)
{

int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

Body

Set

Up

Finish

swap:

movl (%rdi), %edx
movl (%rsi), %eax
movl %eax, (%rdi)
movl %edx, (%rsi)

ret

64

Saint Louis University

64-bit code for long int swap

� 64-bit long int s

� Pass input arguments in registers %rax and %rdx

� movq operation

� “q” stands for quad-word

void swap(long *xp, long *yp)
{

long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Body

Set

Up

Finish

swap_l:

movq (%rdi), %rdx
movq (%rsi), %rax
movq %rax, (%rdi)
movq %rdx, (%rsi)

ret

65

Saint Louis University

Machine Programming I – Basics

� Instruction Set Architecture

� Software Architecture vs. Hardware Architecture

� Common Architecture Classifications

� The Intel x86 ISA – History and Microarchitectures

� Dive into C, Assembly, and Machine code

� The Intel x86 Assembly Basics:

� Common instructions

� Registers, Operands, and mov instruction

� Addressing modes

� Intro to x86-64

� AMD was first!

66

Saint Louis University

Machine Programming I – Summary

� Instruction Set Architecture

� Many different varieties and features of processor architectures

� Separation of (software) Architecture and Microarchitecture is key for

backwards compatibility

� The Intel x86 ISA – History and Microarchitectures

� Evolutionary design leads to many quirks and artifacts

� Dive into C, Assembly, and Machine code

� Compiler must transform statements, expressions, procedures into

low-level instruction sequences

� The Intel x86 Assembly Basics:

� The x86 move instructions cover wide range of data movement forms

� Intro to x86-64

� A major departure from the style of code seen in IA32

67

Saint Louis University

Stored Program Computers

� Instructions represented in binary, just like data

� Instructions and data stored in memory

� Programs can operate on programs

� e.g., compilers, linkers, …

� Binary compatibility allows compiled programs to work

on different computers

� Standardized ISAs

68

Saint Louis University

Basic x86 Registers

