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Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

® Registers and Operands
" movVinstruction

m Intro to x86-64
m AMD was first!



Hardware vs. Software Architecture

m There are two parts to the computer architecture of a
processor.
= Software architecture
= commonly know as the Architecture or Instruction Set Architecture (ISA)

= Hardware architecture
= commonly know as the Microarchitecture

m The (software) architecture includes all aspects of the
design that are visible to programmers

m The microarchitecture refers to one specific implementation
of a software architecture

= e.g. number of cores, processor frequency, cache sizes, instructions
supported, etc.

= the set of all independent hardware architectures for a given
software architecture is known as the processor family

= e.g. the Intel x86 family



Assembly Programmer’s View

Memory
CPU Addresses
. | Object Code
Registers
PC 8 . Data | Program Data
— : OS Data
Condition ~ Instructions
Codes
Stack
m Programmer-Visible State
® PC: Program counter
» Holds address of next instruction

= Register file = Memory

= Temp storage for program data
» Byte addressable array

. "
Condition codes = Code, user data, (some) OS data

= Store status info about recent operation  Includes stack used to support

= Used for conditional branching procedures



Separation of hardware and software

m The reason for the separation of the (software) architecture
from the microarchitecture (hardware) is backwards
compatibility

m Backwards compatibility ensures:

= software written on older processors will run on newer processors (of
the same ISA)

= processor families can always utilize the latest technology by creating
new hardware architectures (for the same ISA)

m However, new microarchitectures often add to the
(software) architecture, so software written on newer
processors may not run on older processors




Parts of the Software Architecture

m There are 4 parts to the (software) architecture

" instruction set
= the set of available instructions and the rules for using them

= register file organization
= the number, size, and rules for using registers

" memory organization & addressing
= the organization of the memory and the rules for accessing data

= operating modes
= the various modes of execution for the processor
= there are usually at least two modes:

— user mode (for general use)

— system mode (allows access to privileged instructions
and memory)



Software Architecture: Instruction Set

m The Instruction Set defines
= the set of available instructions

" fundamental nature of the instructions
= simple and fast
= complex and concise

" jinstruction formats
= define the rules for using the instructions

= the width (in bits) of the datapath

= this defines the fundamental size of data in the CPU, including:
— the size (humber of bits) for the data buses in the CPU
— the number of bits per register in the register file
— the width of the processing units
— the number of address bits for accessing memory



Software Architecture: Instruction Set

m There are 9 fundamental categories of instructions

=" arithmetic

= these instruction perform integer arithmetic, such as add, subtract,
multiply, and negate

— Note: integer division is commonly done in software

= |ogical
= these instructions perform Boolean logic (AND, OR, NOT, etc.)
= relational

= these instructions perform comparisons, including
== !=I <I >I <=I >=

= some ISAs perform comparisons in the conditional branches
= control

= these instructions enable changes in control flow, both for decision
making and modularity
= the set of control instruction includes:
— conditional branches
— unconditional jumps
— procedure calls and returns
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Software Architecture: Instruction Set

" memory
= these instructions allow data to be read from or written to memory
floating-point
= these instruction perform real-number operations, including add,
subtract, multiply, division, comparisons, and conversions
= shifts
= these instructions allow bits to be shifted or rotated left or right
= bit manipulation
= these instructions allow data bits to be set or cleared

= some ISAs do not provide these, since they can be done via logic
instructions

= gsystem instructions

= specialized instructions for system control purposes, such as
— STOPor HALT (stop execution)
— cache hints
— interrupt handling

= some of these instructions are privileged, requiring system mode



Software Architecture: Register File

m The Register File is a small, fast temporary storage area in
the processor’s CPU

" it serves as the primary place for holding data values currently
being operated upon by the CPU

m The organization of the register file determines

= the number of registers

= alarge number of registers is desirable, but having too many will
negatively impact processor speed

= the number of bits per register
= this is equivalent to the width of the datapath

= the purpose of each register
= ideally, most registers should be general-purpose
= however, some registers serve specific purposes
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Purpose of Register File

m Registers are faster to access than memory

m Operating on memory data requires loads and stores
" More instructions to be executed

m Compilers store values in registers whenever possible

= Only spill to memory for less frequently used variables
= Register optimization is important!

1



Software Architecture: Memory

m The Memory Organization & Addressing defines
= how memory is organized in the architecture
= where data and program memory are unified or separate

= the amount of addressable memory

— usually determined by the datapath width
= the number of bytes per address

— most processors are byte-addressable, so each byte has a unique addr
= whether it employs virtual memory, or just physical memory

— virtual memory is usually required in complex computer systemes,
like desktops, laptops, servers, tablets, smart phones, etc.

— simpler systems use embedded processors with only physical memory
= rules identifying how instructions access data in memory
= what instructions may access memory (usually only loads, stores)
= what addressing modes are supported
= the ordering and alignment rules for multi-byte primitive data types
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Software Architecture: Operating Modes

m Operating Modes define the processor’s modes of execution

m The ISA typically supports at least two operating modes
" user mode

= this is the mode of execution for typical use

= system mode

= allows access to privileged instructions and memory

= aside from interrupt and exception handling, system mode is
typically only available to system programmers and administrators

m Processors also generally have hardware testing modes, but
these are usually part of the microarchitecture, not the
(software) architecture

13



Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture

= Common Architecture Classifications
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!

14



Saint Louis University

Common Architecture (ISA) Classifications:

m Concise vs. Fast: CISC vs. RISC

" CISC—- Complex Instruction Set Computers
= complex instructions targeting efficient program representation
= variable-length instructions
= versatile addressing modes
= specialized instructions and registers implement complex tasks
= NOT optimized for speed — tend to be SLOW

" RISC— Reduced Instruction Set Computers
= small set of simple instructions targeting high speed implementation
= fixed-length instructions
= simple addressing modes
= many general-purpose registers
= |eads to FAST hardware implementations
= but less memory efficient
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Classifications: Unified vs. Separate Memory

m von Neumann vs. Harvard architecture
= relates to whether program and data in unified or separate memory
= yon Neumann architecture
= program and data are stored in the same unified memory space

requires only one physical memory

allows self-modifying code

however, code and data must share the same memory bus
used by most general-purpose processors (e.g. Intel x86)

® Harvard architecture
= program and data are stored in separate memory spaces
= requires separate physical memory
= code and data do not share same bus, giving higher bandwidths
= often used by digital signal processors for data-intensive applications
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Classifications: Performance vs. Specificity

m Microprocessor vs. Microcontroller
= Microprocessor

= processors designed for high-performance and flexibility in personal
computers and other general purpose applications

= architectures target high performance through a combination of
high speed and parallelism

= processor chip contains only CPU(s) and cache
= no peripherals included on-chip
= Microcontroller
= processors designed for specific purposes in embedded systems
= only need performance sufficient to needs of that application

= processor chip generally includes:
— asimple CPU
— modest amounts of RAM and (Flash) ROM
— appropriate peripherals needed for specific application

= also often need to meet low power and/or real-time requirements

17
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Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture

= Common Architecture Classifications
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!
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Intel x86 Processors

m The main software architecture for Intel is the x86 ISA
= also known as I1A-32
= for 64-bit processors, it is known as x86-64

m Totally dominate laptop/desktop/server market

m Evolutionary design

= Backwards compatible back to 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= but, only small subset used in Linux programs

19



Intel x86 Family: Many Microarchitectures

X86-16 8086
286
X86-32 / 1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium llI
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / Intel 64 Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

20



Software architecture can grow

m Backward compatibility does not mean instruction set is fixed

" new instructions and functionality can be added to the software
architecture over time

m Intel added additional features over time
" |nstructions to support multimedia operations (MMX, SSE)
= SIMD parallelism — same operation done across multiple data
= |nstructions enabling more efficient conditional operations
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Intel x86: Milestones & Trends

Name Date Transistors MHz

m 8086 1978 29K 5-10

® First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit processor, referred to as IA32
= Added “flat addressing”

m Pentium 1993 3.1M 50-75

m Pentium I 1996 7.5M 233-300

m Pentiumlill 1999 9.5-21M 450-800

m Pentium4F 2004 169M 3200-3800

= First 64-bit processor
= Got very hot

m Core i7 2008 731M 2667-3333
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But IA-32 is CISC? How does it get speed?

m Hard to match RISC performance, but Intel has done just that!
....In terms of speed; less so for power

m CISC instruction set makes implementation difficult
= Hardware translates instructions to simpler micro-operations
= simple instructions: 1-to—1
= complex instructions: 1-to—many
= Micro-engine similar to RISC
= Market share makes this economically viable

m Comparable performance to RISC

= Compilers avoid CISC instructions

23



Processor Trends
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Figure 1. Transistors, frequency, power, performance, and processor cores over time. The
original Moore's law projection of increasing transistors per chip remains unabated even as
performance has stalled.

m Number of transistors has continued to double every 2 years
m In 2004 — we hit the Power Wall

= Processor clock speeds started to leveled off
24
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Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!
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Turning C into Object Code

= Codein files pl.c p2.c

= Compile with command: gcc —O1 —-m32 pl.cp2.c-0p
= Use basic optimizations (-O1)
= Put resulting binary in file p
= On 64-bit machines, specify 32-bit x86 code (-m32)

text C program (pl.c p2.c )

Compiler (gcc —S —m32 )

text Asm program (pl.s p2.s )

Assembler (gcc or as)

binary Object program (pl.0 p2.0 ) Static libraries

Linker (gcc or Id ) La)
binary Executable program (p)

26



Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int X, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp,%ebp
return t; movl 12(%ebp),%eax
} addl 8(%ebp),%eax
popl %ebp
/ret

Some compilers use /
instruction “leave ”

Obtain with command:

gcc —0O1 -S —m32 code.c

-S specifies compile to assembly (vs object) code, and
produces file code.s

27
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Assembly Characteristics: Simple Types

m Integer data of 1, 2, or 4 bytes

= Data values
= Addresses (void* pointers)

m Floating point data of 4, 8, or 10 bytes

m No concept of aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

28



Assembly Characteristics: Operations

m Perform some operation on register or memory data
= arithmetic
= |ogical
= it shift or manipulation
= comparison (relational)

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

29



Object Code

m Assembler

Code for sum .
" Translates .S into .0

0x401040 <sum>: = Binary encoding of each instruction
gigg = Nearly-complete image of executable code
0xe5 = Missing linkages between code in different
0x8b files
gigi m Linker
0x03 = Resolves references between files
0x45 = Combines with static run-time libraries
gigg * Total of 11 bytes « E.g., code for malloc , printf
Oxc3  * Eachinstruction = Some libraries are dynamically linked

1,2, 0r3 bytes = Linking occurs when program begins

e Starts at address execution

0x401040

30
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Machine Instruction Example
m C Code

= Add two signed integers

Int t=x+y;

m Assembly
= Add 2 4-byte integers
= “Long” words in GCC parlance

addl 8(%ebp),%eax

Similar to expression: = Same instruction whether signed
X +=y or unsigned

More precisely: = Operands:

int eax; X: Register Y%eax

int *ebp; y: Memory M[%ebp+8]
eax +=ebp[2] t: Register Yeax

—Return function value in %eax

0x80483ca: 03 45 08 m Object Code
= 3-pyte instruction

= Stored at address 0x80483ca

31



Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4. 55 push %ebp

80483c5: 89e5 mov %esp,%ebp
80483c7: 8b 45 0c mov Oxc(%ebp),%eax
80483ca: 034508 add 0x8(%ebp),%eax
80483cd: 5d pop %ebp

80483ce: c3 ret

m Disassembler
objdump -dp

Useful tool for examining object code

= Analyzes bit pattern of series of instructions

" Produces approximate rendition of assembly code

= Can be run on either a.out (complete executable) or.o file

32
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Alternate Disassembly
Disassembled

Object
0x401040: :
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
Oxe5 0x080483c5 <sum+1>: mov %esp,%ebp
0x8b 0x080483C7 <sum+3>: mov Oxc(%ebp),%eax
0x45 0x080483ca <sum+6>: add O0x8(%ebp),%eax
0x0c 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3 gdb p

disassemble sum

= Disassemble procedure
X/11xb sum

= Examine the 11 bytes starting at sum

33
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What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $Oxffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9al

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

34
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Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

= Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!
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Typical Instructions in Intel x86

m Arithmetic
= add, sub, neg, imul, div, inc, dec, leal, ...
m Logical (bit-wise Boolean)
= and, or, xor, not
m Relational
= cmp, test, sete, ...
m Control
" je, jle, g, jb, jmp, call, ret, ...
m Moves & Memory Access

" mov, push, pop, movswl, movzbl, cmov, ...
= nearly all x86 instructions can access memory

m Shifts
= shr, sar, shl, sal (same as shl )

m Floating-point
= fld, fadd, fsub, fxch, addsd, movss, cvt..., ucom...
= float-point change completely with x86-64
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CISC Instructions: Variable-Length

a. JE EIP + displacement

4 4 8
gg | Condr- Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV  EBX, [EDI + 45]

6 11 8 8
r/m .
MOV  |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

37
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Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
= Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

38



Saint Louis University

Integer Registers (I1A32) Origin

(mostly obsolete)

~
Obeax %oax %ah %al accunul at e
o 0becx %6CX %ch %cl count er
o
= %edx %dx|  %dh %l dat a
Q.
2 <
g %ebx %bx|[  %bh %b| base
g}’ 0] ' : sour ce
Yoes| %si Soure
0/ I 0/l desti nati on
oedi odi dest
—
0 o st ack
/5esp s poi nt er
base
WS e poi nt er
\ )
Y

16-bit virtual registers

(backwards compatibility) 39
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Moving Data: 1A32 Yoeax

m Moving Data YoecX
movl Source, Dest %edx
0
m Operand Types /oebx
" Immediate: Constant integer data Yoesi
= example: $0x400 , $-533 Oedi
= like C constant, but prefixed with ‘$ %esp
= encoded with 1, 2, or 4 bytes
%ebp

= Register: One of 8 integer registers
= example: %eax, %edx
= but %esp and %ebp reserved for special use

= others have special uses in particular situations
= Memory: 4 consecutive bytes of memory at address given by register
= simplest example: (Y%eax)

= various other “address modes”

40
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movl Operand Combinations

Source Dest Src, Dest C Analog
e Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p =-147;
movi < Reg Reg movl %eax,%edx temp2 = templ,;
Mem movl %eax,(%edx) *p = temp;
kMem Reg movl (Yeax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

4
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Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
= Registers, Operands, and moVinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!
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Simple Memory Addressing Modes

m Normal:
(R) Mem[Reg[R]]

= Register R specifies memory address

movl (%ecx),%eax

m Displacement:
D(R) Mem[Reg[R]+D]

= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8(%ebp),%edx

43



Using Simple Addressing Modes

swap: -
void swap(int *xp, int *yp) pushl  %ebx . Set
v J Up
Int t0 = *Xp;
int t1 = *yp; )
*wp = t1: movl  8(%esp), Y%edx
*yp = t0: movl  12(%esp), Yoeax
} movl  (%edx), %ecx
movl  (%eax), %ebx " Body
movl  %ebx, (Y%edx)
movl  %ecx, (Y%oeax) y

popl  %ebx Finish
ret

44



Using Simple Addressing Modes

swap:
void swap(int *xp, int *yp) oushl  %ebx . Set
to J up
Int t0 = *xp;
int t1 = *yp; )
*wp = t1: movl  8(%esp), Y%edx
*yp = t0: movl  12(%esp), Yoeax
} movl  (%edx), %ecx
movl  (%eax), %ebx " Body
movl  %ebx, (Y%edx)
movl  %ecx, (Y%oeax) y

popl  %ebx Finish
ret

45



Understanding Swap

void swap(int *xp, int *yp)

{

Int tO = *Xxp;

int t1 = *yp;

xp = t1;

*yp = t0;

}

Register Value

%edx Xp

%ecx yp

%ebx t0 movl
movl

%eax t1 movl
movl
movl
movl

Offset
12

8(%esp), Y%edx
12(%esp), Y%eax
(Y%edx), Y%ecx
(Y%eax), Y%ebx
%ebx, (Y%edx)
%ecx, (Yoeax)

Saint Louis University

. Stack
y (in memory)

yp

Xp

Rtn adr

Old %ebx — %esp

#edx =xp
#eax =yp
#ecx =*p (t0)
#ebx =*yp (t1)
#*xp =t1
#*yp =10

46
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- Address
Understanding Swap >3 Ox124
456 0x120
11
Y%eax oxte
0x118
%edx Offset Ox114
%ecx yp 12 |1 0x120 0x110
%ebx Xp 8 | 0x124 0x10c
%%besi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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- Address
Understanding Swap >3 o194
456 0x120
11
Yeax Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx yp 12 |1 0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr [ gy908
rod %esp — 0 0x104
%esp
movl 8(%esp), %oedx  #edx =xp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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. Address
Understanding Swap >3 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx yp 12 | 0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Y%oeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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. Address
Understanding Swap 53 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [ 0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*xp (t0)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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. Address
Understanding Swap >3 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [ 0x120 0x110
%ebx| 456 Xp 8 10x124 | ox10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx #ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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- Address
Understanding Swap T ox124
456 0x120
11
%eax| 0x120 oxtic
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [ 0x120 0x110
%ebx 456 Xp 8 [0x124  ox10c
%%besi 4 |Rtnadr [ gy908
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (Yedx) #*p =11
movl %ecx, (Yoeax) #*yp =10
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. Address
Understanding Swap T ox124
123 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [ 0x120 0x110
%ebx| 456 Xp 8 10x124 | ox10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx  #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10
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Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[ Reg[Rb] + S * Reg[Ri] + D]

= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for %esp (likely not %ebpeither)
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[ Reg[Rb] + Reg[Ri] ]
D(Rb,Ri) Mem[ Reg[Rb] + Reg[Ri] + D]
(Rb,Ri,S) Mem[ Reg[Rb]+ S * Reg[Ri] ]
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Basic x86 Addressing Modes

= Memory addressing modes
= Address in register
= Address =R, + displacement
= Address =R, * R
= Address =R,
= Address = R

index

+ 258l x Rindex

+ 258l x Rindex

(scale=0,1, 2, or 3)

base + displacement
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Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!
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AMD created first 64-bit version of x86

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m 2003, developed 64-bit version of x86: x86-64

= Recruited top circuit designers from DEC and other diminishing companies
= Built Opteron: tough competitor to Pentium 4
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Intel’s 64-Bit

m Intel Attempted Radical Shift from IA32 to |1A64
= Totally different architecture (/tanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Stepped in with Evolutionary Solution
= QOriginally called x86-64 (now called AMD64)

m 2004: Intel Announces their 64-bit extension to IA32
= QOriginally called EMT64 (now called Intel 64)
= Almost identical to x86-64!

m Collectively known as x86-64

" minor differences between the two

58



Saint Louis University

Data Representations: 1A32 vs. x86-64

m Sizes of C Objects (in bytes)
C Data Type Intel IA32 x86-64
= unsigned 4

D

= int

= longint
= char

= short

= float

co A N R B b
co A N = 00 PH

= double
= long double 10/12 16
= pointer (e.g. char *) 4 8
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x86-64 Integer Registers

Yorax Yeax %r8 %r8d

%rbx %ebx %r9 %r9d

06rcx %ecx %rl10 %r10d
%rdx Yoedx %rll %rlld
%orsi %esi %rl12 %r12d
%rdi %edi %rl3 %r13d
%rsp Yoesp %rl4 %r14d
%rbp %ebp %r15 %r15d

Saint Louis University

= Extend existing registers. Add 8 new ones.
= Make %ebp/%rbp general purpose

60



Saint Louis University

New Instructions for 64-bit Operands

m Longword| (4 Bytes) <> Quad word ( (8 Bytes)

m New instructions:
= movl = movq
= addl - addq
= sall = salq
"= etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to O
= Example: addl
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32-bit code for int swap

swap:
}/0|d swap(int *xp, int *yp) oushl %ebx | Set
int t0 = *xp; J Up
int t1 = *yp; N
*xp =tl; movl  8(%esp), Y%edx
*yp =10; movl  12(%esp), Y%eax
} movl  (%edx), %ecx \
movl (%eax), %ebx Body
movl  %ebx, (%edx)
movl  %ecx, (Yoeax) y

popl  %ebx Finish
ret
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64-bit code for Int swap

swap:
, , , Set
void swap(int *xp, int *yp) Up
: int t0 = *xp: movl  (%rdi), %edx N
int t1 = *yp; movl  (%rsi), Yoeax
*Xp =1t1; movl  %eax, (%ordi) > Body
*yp = t0; movl  %edx, (%rsi) )
}

ret } Finish
m Operands passed in registers (why useful?)
= Firstinput arg (xp) in %rdi , second input arg (yp) in %orsi
" 64-bit pointers
m No stack operations required
m 32-bit int s held temporarily in %eaxand %edx
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64-bit code forlong Int swap

swap_|:
void swap(long *xp, long *yp) f;:)t
: long t0 = *xp; movqg  (%rdi), %rdx N
long t1 = *yp; movqg (%rsi), Y%rax
xp =tl; movgq ~ %rax, (%rdi) > Body
*yp = 1t0; movq  %rdx, (%rsi) )
}

ret } Finish
m 64-bitlongint s

= Pass input arguments in registers %rax and %rdx
" movg operation

oa_ 0
|

q” stands for quad-word
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Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!
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Machine Programming | — Summary

m Instruction Set Architecture

= Many different varieties and features of processor architectures

= Separation of (software) Architecture and Microarchitecture is key for
backwards compatibility

m The Intel x86 ISA — History and Microarchitectures
= Evolutionary design leads to many quirks and artifacts

m Dive into C, Assembly, and Machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m The Intel x86 Assembly Basics:

"= The x86 move instructions cover wide range of data movement forms
m Intro to x86-64

= A major departure from the style of code seen in 1A32
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Stored Program Computers

m Instructions represented in binary, just like data
m Instructions and data stored in memory

m Programs can operate on programs

= e.g., compilers, linkers, ...

m Binary compatibility allows compiled programs to work
on different computers
= Standardized ISAs
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Basic x86 Registers

Name Use
31 0

EAX GPR 0
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR7

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes
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