Saint Louis University

Machine-Level Programming | —
Introduction

CSCl 224 / ECE 317: Computer Architecture

Instructor:
Prof. Jason Fritts

Slides adapted from Bryant & O’Hallaron’s slides

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

® Registers and Operands
" movVinstruction

m Intro to x86-64
m AMD was first!

Hardware vs. Software Architecture

m There are two parts to the computer architecture of a
processor.
= Software architecture
= commonly know as the Architecture or Instruction Set Architecture (ISA)

= Hardware architecture
= commonly know as the Microarchitecture

m The (software) architecture includes all aspects of the
design that are visible to programmers

m The microarchitecture refers to one specific implementation
of a software architecture

= e.g. number of cores, processor frequency, cache sizes, instructions
supported, etc.

= the set of all independent hardware architectures for a given
software architecture is known as the processor family

= e.g. the Intel x86 family

Assembly Programmer’s View

Memory
CPU Addresses
. | Object Code
Registers
PC 8 . Data | Program Data
— : OS Data
Condition ~ Instructions
Codes
Stack
m Programmer-Visible State
® PC: Program counter
» Holds address of next instruction

= Register file = Memory

= Temp storage for program data
» Byte addressable array

. "
Condition codes = Code, user data, (some) OS data

= Store status info about recent operation Includes stack used to support

= Used for conditional branching procedures

Separation of hardware and software

m The reason for the separation of the (software) architecture
from the microarchitecture (hardware) is backwards
compatibility

m Backwards compatibility ensures:

= software written on older processors will run on newer processors (of
the same ISA)

= processor families can always utilize the latest technology by creating
new hardware architectures (for the same ISA)

m However, new microarchitectures often add to the
(software) architecture, so software written on newer
processors may not run on older processors

Parts of the Software Architecture

m There are 4 parts to the (software) architecture

" instruction set
= the set of available instructions and the rules for using them

= register file organization
= the number, size, and rules for using registers

" memory organization & addressing
= the organization of the memory and the rules for accessing data

= operating modes
= the various modes of execution for the processor
= there are usually at least two modes:

— user mode (for general use)

— system mode (allows access to privileged instructions
and memory)

Software Architecture: Instruction Set

m The Instruction Set defines
= the set of available instructions

" fundamental nature of the instructions
= simple and fast
= complex and concise

" jinstruction formats
= define the rules for using the instructions

= the width (in bits) of the datapath

= this defines the fundamental size of data in the CPU, including:
— the size (humber of bits) for the data buses in the CPU
— the number of bits per register in the register file
— the width of the processing units
— the number of address bits for accessing memory

Software Architecture: Instruction Set

m There are 9 fundamental categories of instructions

=" arithmetic

= these instruction perform integer arithmetic, such as add, subtract,
multiply, and negate

— Note: integer division is commonly done in software

= |ogical
= these instructions perform Boolean logic (AND, OR, NOT, etc.)
= relational

= these instructions perform comparisons, including
== !=I <I >I <=I >=

= some ISAs perform comparisons in the conditional branches
= control

= these instructions enable changes in control flow, both for decision
making and modularity
= the set of control instruction includes:
— conditional branches
— unconditional jumps
— procedure calls and returns

Saint Louis University

Software Architecture: Instruction Set

" memory
= these instructions allow data to be read from or written to memory
floating-point
= these instruction perform real-number operations, including add,
subtract, multiply, division, comparisons, and conversions
= shifts
= these instructions allow bits to be shifted or rotated left or right
= bit manipulation
= these instructions allow data bits to be set or cleared

= some ISAs do not provide these, since they can be done via logic
instructions

= gsystem instructions

= specialized instructions for system control purposes, such as
— STOPor HALT (stop execution)
— cache hints
— interrupt handling

= some of these instructions are privileged, requiring system mode

Software Architecture: Register File

m The Register File is a small, fast temporary storage area in
the processor’s CPU

" it serves as the primary place for holding data values currently
being operated upon by the CPU

m The organization of the register file determines

= the number of registers

= alarge number of registers is desirable, but having too many will
negatively impact processor speed

= the number of bits per register
= this is equivalent to the width of the datapath

= the purpose of each register
= ideally, most registers should be general-purpose
= however, some registers serve specific purposes

10

Saint Louis University

Purpose of Register File

m Registers are faster to access than memory

m Operating on memory data requires loads and stores
" More instructions to be executed

m Compilers store values in registers whenever possible

= Only spill to memory for less frequently used variables
= Register optimization is important!

1

Software Architecture: Memory

m The Memory Organization & Addressing defines
= how memory is organized in the architecture
= where data and program memory are unified or separate

= the amount of addressable memory

— usually determined by the datapath width
= the number of bytes per address

— most processors are byte-addressable, so each byte has a unique addr
= whether it employs virtual memory, or just physical memory

— virtual memory is usually required in complex computer systemes,
like desktops, laptops, servers, tablets, smart phones, etc.

— simpler systems use embedded processors with only physical memory
= rules identifying how instructions access data in memory
= what instructions may access memory (usually only loads, stores)
= what addressing modes are supported
= the ordering and alignment rules for multi-byte primitive data types

12

Software Architecture: Operating Modes

m Operating Modes define the processor’s modes of execution

m The ISA typically supports at least two operating modes
" user mode

= this is the mode of execution for typical use

= system mode

= allows access to privileged instructions and memory

= aside from interrupt and exception handling, system mode is
typically only available to system programmers and administrators

m Processors also generally have hardware testing modes, but
these are usually part of the microarchitecture, not the
(software) architecture

13

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture

= Common Architecture Classifications
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!

14

Saint Louis University

Common Architecture (ISA) Classifications:

m Concise vs. Fast: CISC vs. RISC

" CISC—- Complex Instruction Set Computers
= complex instructions targeting efficient program representation
= variable-length instructions
= versatile addressing modes
= specialized instructions and registers implement complex tasks
= NOT optimized for speed — tend to be SLOW

" RISC— Reduced Instruction Set Computers
= small set of simple instructions targeting high speed implementation
= fixed-length instructions
= simple addressing modes
= many general-purpose registers
= |eads to FAST hardware implementations
= but less memory efficient

15

Saint Louis University

Classifications: Unified vs. Separate Memory

m von Neumann vs. Harvard architecture
= relates to whether program and data in unified or separate memory
= yon Neumann architecture
= program and data are stored in the same unified memory space

requires only one physical memory

allows self-modifying code

however, code and data must share the same memory bus
used by most general-purpose processors (e.g. Intel x86)

® Harvard architecture
= program and data are stored in separate memory spaces
= requires separate physical memory
= code and data do not share same bus, giving higher bandwidths
= often used by digital signal processors for data-intensive applications

16

Saint Louis University

Classifications: Performance vs. Specificity

m Microprocessor vs. Microcontroller
= Microprocessor

= processors designed for high-performance and flexibility in personal
computers and other general purpose applications

= architectures target high performance through a combination of
high speed and parallelism

= processor chip contains only CPU(s) and cache
= no peripherals included on-chip
= Microcontroller
= processors designed for specific purposes in embedded systems
= only need performance sufficient to needs of that application

= processor chip generally includes:
— asimple CPU
— modest amounts of RAM and (Flash) ROM
— appropriate peripherals needed for specific application

= also often need to meet low power and/or real-time requirements

17

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

= Software Architecture vs. Hardware Architecture

= Common Architecture Classifications
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!

18

Saint Louis University

Intel x86 Processors

m The main software architecture for Intel is the x86 ISA
= also known as I1A-32
= for 64-bit processors, it is known as x86-64

m Totally dominate laptop/desktop/server market

m Evolutionary design

= Backwards compatible back to 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= but, only small subset used in Linux programs

19

Intel x86 Family: Many Microarchitectures

X86-16 8086
286
X86-32 / 1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium llI
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / Intel 64 Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

20

Software architecture can grow

m Backward compatibility does not mean instruction set is fixed

" new instructions and functionality can be added to the software
architecture over time

m Intel added additional features over time
" |nstructions to support multimedia operations (MMX, SSE)
= SIMD parallelism — same operation done across multiple data
= |nstructions enabling more efficient conditional operations

1000
900 ~
800 -
700 -

600 -

400 A

300 A

200 A
100 14—

o+-r—+—1——7r—rrr—r— """
A2 o Vo P P P v o PRSI PP
B F T PP PP PP P S S S S oS

Number of Instructions

21

Saint Louis University

Intel x86: Milestones & Trends

Name Date Transistors MHz

m 8086 1978 29K 5-10

® First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit processor, referred to as IA32
= Added “flat addressing”

m Pentium 1993 3.1M 50-75

m Pentium I 1996 7.5M 233-300

m Pentiumlill 1999 9.5-21M 450-800

m Pentium4F 2004 169M 3200-3800

= First 64-bit processor
= Got very hot

m Core i7 2008 731M 2667-3333

22

Saint Louis University

But IA-32 is CISC? How does it get speed?

m Hard to match RISC performance, but Intel has done just that!
....In terms of speed; less so for power

m CISC instruction set makes implementation difficult
= Hardware translates instructions to simpler micro-operations
= simple instructions: 1-to—1
= complex instructions: 1-to—many
= Micro-engine similar to RISC
= Market share makes this economically viable

m Comparable performance to RISC

= Compilers avoid CISC instructions

23

Processor Trends

10,000,000 ,
* Number of transistors (thousands) | ! i
1,000,000 « Relative performance + e
= Clock speed (MHz) i 2.
Power type (W)
100,000 -
Number of cores/chip
= 10,000 - |
12
g 1,000 -
Z
2 100
10
1
0 .
1985 1990 1995 2000 2005 2010
Year of introduction
Figure 1. Transistors, frequency, power, performance, and processor cores over time. The
original Moore's law projection of increasing transistors per chip remains unabated even as
performance has stalled.

m Number of transistors has continued to double every 2 years
m In 2004 — we hit the Power Wall

= Processor clock speeds started to leveled off
24

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code

m The Intel x86 Assembly Basics:
" Registers
" Operands
" movVinstruction

m Intro to x86-64
m AMD was first!

25

Turning C into Object Code

= Codein files pl.c p2.c

= Compile with command: gcc —O1 —-m32 pl.cp2.c-0p
= Use basic optimizations (-O1)
= Put resulting binary in file p
= On 64-bit machines, specify 32-bit x86 code (-m32)

text C program (pl.c p2.c)

Compiler (gcc —S —m32)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.0 p2.0) Static libraries

Linker (gcc or Id) La)
binary Executable program (p)

26

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int X, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp,%ebp
return t; movl 12(%ebp),%eax
} addl 8(%ebp),%eax
popl %ebp
/ret

Some compilers use /
instruction “leave ”

Obtain with command:

gcc —0O1 -S —m32 code.c

-S specifies compile to assembly (vs object) code, and
produces file code.s

27

Saint Louis University

Assembly Characteristics: Simple Types

m Integer data of 1, 2, or 4 bytes

= Data values
= Addresses (void* pointers)

m Floating point data of 4, 8, or 10 bytes

m No concept of aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

28

Assembly Characteristics: Operations

m Perform some operation on register or memory data
= arithmetic
= |ogical
= it shift or manipulation
= comparison (relational)

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

29

Object Code

m Assembler

Code for sum .
" Translates .S into .0

0x401040 <sum>: = Binary encoding of each instruction
gigg = Nearly-complete image of executable code
0xe5 = Missing linkages between code in different
0x8b files
gigi m Linker
0x03 = Resolves references between files
0x45 = Combines with static run-time libraries
gigg * Total of 11 bytes « E.g., code for malloc , printf
Oxc3 * Eachinstruction = Some libraries are dynamically linked

1,2, 0r3 bytes = Linking occurs when program begins

e Starts at address execution

0x401040

30

Saint Louis University

Machine Instruction Example
m C Code

= Add two signed integers

Int t=x+y;

m Assembly
= Add 2 4-byte integers
= “Long” words in GCC parlance

addl 8(%ebp),%eax

Similar to expression: = Same instruction whether signed
X +=y or unsigned

More precisely: = Operands:

int eax; X: Register Y%eax

int *ebp; y: Memory M[%ebp+8]
eax +=ebp[2] t: Register Yeax

—Return function value in %eax

0x80483ca: 03 45 08 m Object Code
= 3-pyte instruction

= Stored at address 0x80483ca

31

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4. 55 push %ebp

80483c5: 89e5 mov %esp,%ebp
80483c7: 8b 45 0c mov Oxc(%ebp),%eax
80483ca: 034508 add 0x8(%ebp),%eax
80483cd: 5d pop %ebp

80483ce: c3 ret

m Disassembler
objdump -dp

Useful tool for examining object code

= Analyzes bit pattern of series of instructions

" Produces approximate rendition of assembly code

= Can be run on either a.out (complete executable) or.o file

32

Saint Louis University

Alternate Disassembly
Disassembled

Object
0x401040: :
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
Oxe5 0x080483c5 <sum+1>: mov %esp,%ebp
0x8b 0x080483C7 <sum+3>: mov Oxc(%ebp),%eax
0x45 0x080483ca <sum+6>: add O0x8(%ebp),%eax
0x0c 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3 gdb p

disassemble sum

= Disassemble procedure
X/11xb sum

= Examine the 11 bytes starting at sum

33

Saint Louis University

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $Oxffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9al

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

34

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

= Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

35

Typical Instructions in Intel x86

m Arithmetic
= add, sub, neg, imul, div, inc, dec, leal, ...
m Logical (bit-wise Boolean)
= and, or, xor, not
m Relational
= cmp, test, sete, ...
m Control
" je, jle, g, jb, jmp, call, ret, ...
m Moves & Memory Access

" mov, push, pop, movswl, movzbl, cmov, ...
= nearly all x86 instructions can access memory

m Shifts
= shr, sar, shl, sal (same as shl)

m Floating-point
= fld, fadd, fsub, fxch, addsd, movss, cvt..., ucom...
= float-point change completely with x86-64

36

Saint Louis University

CISC Instructions: Variable-Length

a. JE EIP + displacement

4 4 8
gg | Condr- Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]

6 11 8 8
r/m .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

37

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
= Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

38

Saint Louis University

Integer Registers (I1A32) Origin

(mostly obsolete)

~
Obeax %oax %ah %al accunul at e
o 0becx %6CX %ch %cl count er
o
= %edx %dx| %dh %l dat a
Q.
2 <
g %ebx %bx|[%bh %b| base
g}’ 0] ' : sour ce
Yoes| %si Soure
0/ I 0/l desti nati on
oedi odi dest
—
0 o st ack
/5esp s poi nt er
base
WS e poi nt er
\)
Y

16-bit virtual registers

(backwards compatibility) 39

Saint Louis University

Moving Data: 1A32 Yoeax

m Moving Data YoecX
movl Source, Dest %edx
0
m Operand Types /oebx
" Immediate: Constant integer data Yoesi
= example: $0x400 , $-533 Oedi
= like C constant, but prefixed with ‘$ %esp
= encoded with 1, 2, or 4 bytes
%ebp

= Register: One of 8 integer registers
= example: %eax, %edx
= but %esp and %ebp reserved for special use

= others have special uses in particular situations
= Memory: 4 consecutive bytes of memory at address given by register
= simplest example: (Y%eax)

= various other “address modes”

40

Saint Louis University

movl Operand Combinations

Source Dest Src, Dest C Analog
e Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147,(%eax) *p =-147;
movi < Reg Reg movl %eax,%edx temp2 = templ,;
Mem movl %eax,(%edx) *p = temp;
kMem Reg movl (Yeax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

4

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

Software Architecture (“Architecture” or “ISA”)
VS.

Hardware Architecture (“Microarchitecture”)
m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
= Registers, Operands, and moVinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

42

Saint Louis University

Simple Memory Addressing Modes

m Normal:
(R) Mem[Reg[R]]

= Register R specifies memory address

movl (%ecx),%eax

m Displacement:
D(R) Mem[Reg[R]+D]

= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8(%ebp),%edx

43

Using Simple Addressing Modes

swap: -
void swap(int *xp, int *yp) pushl %ebx . Set
v J Up
Int t0 = *Xp;
int t1 = *yp;)
*wp = t1: movl 8(%esp), Y%edx
*yp = t0: movl 12(%esp), Yoeax
} movl (%edx), %ecx
movl (%eax), %ebx " Body
movl %ebx, (Y%edx)
movl %ecx, (Y%oeax) y

popl %ebx Finish
ret

44

Using Simple Addressing Modes

swap:
void swap(int *xp, int *yp) oushl %ebx . Set
to J up
Int t0 = *xp;
int t1 = *yp;)
*wp = t1: movl 8(%esp), Y%edx
*yp = t0: movl 12(%esp), Yoeax
} movl (%edx), %ecx
movl (%eax), %ebx " Body
movl %ebx, (Y%edx)
movl %ecx, (Y%oeax) y

popl %ebx Finish
ret

45

Understanding Swap

void swap(int *xp, int *yp)

{

Int tO = *Xxp;

int t1 = *yp;

xp = t1;

*yp = t0;

}

Register Value

%edx Xp

%ecx yp

%ebx t0 movl
movl

%eax t1 movl
movl
movl
movl

Offset
12

8(%esp), Y%edx
12(%esp), Y%eax
(Y%edx), Y%ecx
(Y%eax), Y%ebx
%ebx, (Y%edx)
%ecx, (Yoeax)

Saint Louis University

. Stack
y (in memory)

yp

Xp

Rtn adr

Old %ebx — %esp

#edx =xp
#eax =yp
#ecx =*p (t0)
#ebx =*yp (t1)
#*xp =t1
#*yp =10

46

Saint Louis University

- Address
Understanding Swap >3 Ox124
456 0x120
11
Y%eax oxte
0x118
%edx Offset Ox114
%ecx yp 12 |1 0x120 0x110
%ebx Xp 8 | 0x124 0x10c
%%besi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

47

Saint Louis University

- Address
Understanding Swap >3 o194
456 0x120
11
Yeax Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx yp 12 |1 0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr [gy908
rod %esp — 0 0x104
%esp
movl 8(%esp), %oedx #edx =xp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

48

Saint Louis University

. Address
Understanding Swap >3 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx yp 12 | 0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Y%oeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

49

Saint Louis University

. Address
Understanding Swap 53 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [0x120 0x110
%ebx Xp 8 |0x124 0x10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*xp (t0)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

50

Saint Louis University

. Address
Understanding Swap >3 o194
456 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [0x120 0x110
%ebx| 456 Xp 8 10x124 | ox10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx #ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

51

Saint Louis University

- Address
Understanding Swap T ox124
456 0x120
11
%eax| 0x120 oxtic
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [0x120 0x110
%ebx 456 Xp 8 [0x124 ox10c
%%besi 4 |Rtnadr [gy908
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax #eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (Yedx) #*p =11
movl %ecx, (Yoeax) #*yp =10

52

Saint Louis University

. Address
Understanding Swap T ox124
123 0x120
11
%eax| 0x120 Oxtie
0x118
%edx| 0x124 Offset Ox114
X
%ecx 123 yp 12 [0x120 0x110
%ebx| 456 Xp 8 10x124 | ox10c
%esi 4 |Rtnadr | o108
rod %esp — 0 0x104
%esp
movl 8(%esp), Yoedx #edx =Xxp
%ebp| 0x104 movl 12(%esp), Yoeax # eax =yp

movl (%edx), %ecx #ecx =*p (10)
movl (%eax), %ebx # ebx =*yp (t1)
movl %ebx, (%edx) #*p =tl
movl %ecx, (Yoeax) #*yp =10

53

Saint Louis University

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb] + S * Reg[Ri] + D]

= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for %esp (likely not %ebpeither)
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb] + Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb] + Reg[Ri] + D]
(Rb,Ri,S) Mem[Reg[Rb]+ S * Reg[Ri]]

54

Basic x86 Addressing Modes

= Memory addressing modes
= Address in register
= Address =R, + displacement
= Address =R, * R
= Address =R,
= Address = R

index

+ 258l x Rindex

+ 258l x Rindex

(scale=0,1, 2, or 3)

base + displacement

55

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

56

Saint Louis University

AMD created first 64-bit version of x86

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m 2003, developed 64-bit version of x86: x86-64

= Recruited top circuit designers from DEC and other diminishing companies
= Built Opteron: tough competitor to Pentium 4

57

Saint Louis University

Intel’s 64-Bit

m Intel Attempted Radical Shift from IA32 to |1A64
= Totally different architecture (/tanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Stepped in with Evolutionary Solution
= QOriginally called x86-64 (now called AMD64)

m 2004: Intel Announces their 64-bit extension to IA32
= QOriginally called EMT64 (now called Intel 64)
= Almost identical to x86-64!

m Collectively known as x86-64

" minor differences between the two

58

Saint Louis University

Data Representations: 1A32 vs. x86-64

m Sizes of C Objects (in bytes)
C Data Type Intel IA32 x86-64
= unsigned 4

D

= int

= longint
= char

= short

= float

co A N R B b
co A N = 00 PH

= double
= long double 10/12 16
= pointer (e.g. char *) 4 8

59

x86-64 Integer Registers

Yorax Yeax %r8 %r8d

%rbx %ebx %r9 %r9d

06rcx %ecx %rl10 %r10d
%rdx Yoedx %rll %rlld
%orsi %esi %rl12 %r12d
%rdi %edi %rl3 %r13d
%rsp Yoesp %rl4 %r14d
%rbp %ebp %r15 %r15d

Saint Louis University

= Extend existing registers. Add 8 new ones.
= Make %ebp/%rbp general purpose

60

Saint Louis University

New Instructions for 64-bit Operands

m Longword| (4 Bytes) <> Quad word ((8 Bytes)

m New instructions:
= movl = movq
= addl - addq
= sall = salq
"= etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to O
= Example: addl

61

Saint Louis University

32-bit code for int swap

swap:
}/0|d swap(int *xp, int *yp) oushl %ebx | Set
int t0 = *xp; J Up
int t1 = *yp; N
*xp =tl; movl 8(%esp), Y%edx
*yp =10; movl 12(%esp), Y%eax
} movl (%edx), %ecx \
movl (%eax), %ebx Body
movl %ebx, (%edx)
movl %ecx, (Yoeax) y

popl %ebx Finish
ret

62

Saint Louis University

64-bit code for Int swap

swap:
, , , Set
void swap(int *xp, int *yp) Up
: int t0 = *xp: movl (%rdi), %edx N
int t1 = *yp; movl (%rsi), Yoeax
*Xp =1t1; movl %eax, (%ordi) > Body
*yp = t0; movl %edx, (%rsi))
}

ret } Finish
m Operands passed in registers (why useful?)
= Firstinput arg (xp) in %rdi , second input arg (yp) in %orsi
" 64-bit pointers
m No stack operations required
m 32-bit int s held temporarily in %eaxand %edx

63

64-bit code forlong Int swap

swap_|:
void swap(long *xp, long *yp) f;:)t
: long t0 = *xp; movqg (%rdi), %rdx N
long t1 = *yp; movqg (%rsi), Y%rax
xp =tl; movgq ~ %rax, (%rdi) > Body
*yp = 1t0; movq %rdx, (%rsi))
}

ret } Finish
m 64-bitlongint s

= Pass input arguments in registers %rax and %rdx
" movg operation

oa_ 0
|

q” stands for quad-word

64

Saint Louis University

Machine Programming | — Basics

m Instruction Set Architecture

m Software Architecture vs. Hardware Architecture
"= Common Architecture Classifications

m The Intel x86 ISA — History and Microarchitectures
m Dive into C, Assembly, and Machine code
m The Intel x86 Assembly Basics:

" Common instructions
m Registers, Operands, and movinstruction
= Addressing modes
m Intro to x86-64
m AMD was first!

65

Saint Louis University

Machine Programming | — Summary

m Instruction Set Architecture

= Many different varieties and features of processor architectures

= Separation of (software) Architecture and Microarchitecture is key for
backwards compatibility

m The Intel x86 ISA — History and Microarchitectures
= Evolutionary design leads to many quirks and artifacts

m Dive into C, Assembly, and Machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m The Intel x86 Assembly Basics:

"= The x86 move instructions cover wide range of data movement forms
m Intro to x86-64

= A major departure from the style of code seen in 1A32

66

Saint Louis University

Stored Program Computers

m Instructions represented in binary, just like data
m Instructions and data stored in memory

m Programs can operate on programs

= e.g., compilers, linkers, ...

m Binary compatibility allows compiled programs to work
on different computers
= Standardized ISAs

67

Saint Louis University

Basic x86 Registers

Name Use
31 0

EAX GPR 0
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR7

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

68

