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Abstract— We define localized content-based image retrieval as
a CBIR task where the user is only interested in a portion of
the image, and the rest of the image is irrelevant. In this paper
we present a localized CBIR system, ACCIO! , that uses labeled
images in conjunction with a multiple-instance learning algorithm
to first identify the desired object and weight the features accord-
ingly, and then to rank images in the database using a similarity
measure that is based upon only the relevant portions of the
image. A challenge for localized CBIR is how to represent the
image to capture the content. We present and compare two novel
image representations, which extend traditional segmentation-
based and salient point-based techniques respectively, to capture
content in a localized CBIR setting.

Index Terms— machine learning, content-based image re-
trieval, multiple instance learning, salient points

I. INTRODUCTION

Classic content-based image retrieval (CBIR) takes a single
query image, and retrieves similar images. Since the user typically
does not provide any indication of which portion of the image is
of interest, such a search must rely upon a global view of the
image. We define localized content-based image retrieval as a
CBIR task where the user is only interested in a portion of the
image, and the rest is irrelevant.

Unless the user explicitly marks the region of interest, localized
CBIR must rely on multiple images (labeled as positive or nega-
tive) to learn which portion of the image is of interest. The query
set contains a set of images either directly provided by the user or
obtained using relevance feedback [25] to add labeled feedback
images to the original query image. For example, frames from
surveillance video could be available for times when suspicious
activity occurred (labeled as positive) and others for times when
nothing out of the ordinary occurred (labeled as negative). Used in
conjunction with an image repository containing unlabeled video
frames, ACCIO! could be used to search for frames that have some
object in common with those containing suspicious activity. In
localized CBIR, the query set is used to identify the portion(s)
of the image that are relevant to the user’s search, as well to
determine an appropriate weighting of the features.

Many CBIR systems either subdivide the image into pre-
defined blocks [21], [22], [28], or more commonly partition the
image into different meaningful regions by applying a segmenta-
tion algorithm [24], [30]. In both cases, each region of the image
is represented as a vector of feature values extracted from that
region. Other CBIR systems extract salient points [15], [16], [20],
[27], [31], [32], which are points of high variability in the features
of the local pixel neighborhood. With salient point-based methods,
one feature vector is created for each salient point.

One distinction between region-based CBIR systems and local-
ized CBIR is how the image is processed. Single feature vector
CBIR systems represent the entire image as one feature vector.
For example, a color histogram [5], [11], [18] defined over the
entire image is such a representation. In contrast, multiple feature
vector CBIR systems represent the image as a collection of feature

vectors with one feature vector for either a block in some pre-
specified image subdivision (e.g., [21], [22]), the region defined
by a segmentation algorithm (e.g., [30]), or a window around each
salient point (e.g., [15], [16], [20], [27], [31], [32]).

Another important distinction is the type of similarity metric
used to rank the images. In a global ranking method, all feature
vectors in the image representation affect the ranking. While
salient point-based methods only use portions of the image around
the salient points, if the ranking method uses all salient points,
then it is a global method. In contrast, local ranking methods
select only portions of an image (or a subset of the salient points)
as relevant to rank the images. For example, if a salient point-
based method learns which subset S of the salient points are
contained in desirable images and ranks images using only the
subset S of salient points, then it is a local ranking method.
Localized CBIR systems must use local ranking methods.

We present ACCIO! , named after Harry Potter’s summoning
charm, that uses a small query set in conjunction with a multiple-
instance learning algorithm to identify the desired local content,
re-weight the features, and then rank new images. We also present
two novel image representations. The first extends traditional
segmentation-based techniques, and the second extends traditional
salient point-based techniques. These image representations allow
ACCIO! to perform well even when the desired content is com-
plex, defined by multiple parts or objects.

To evaluate our work, we introduce two benchmarks1, SIVAL,
that contains 1500 images among 25 categories, and also a
benchmark composed from Flickr containing 20 categories with
100 images per category, as well as 2000 images that are not from
any categories. The images for the 20 categories are obtained by
searching for the following terms using Flickr’s API: American
flag, boat, cat, Coca-Cola can, fire flame, fireworks, honey bee,
Irish flag, keyboard, Mexico City taxi, Mountie, New York taxi,
orchard, ostrich, Pepsi can, Persian rug, samurai helmet, snow
boarding, sushi, waterfall. The top 200 images (based on rele-
vance) are downloaded for each category, and then we manually
picked 100 images that best represented the category. For the
2000 random images we searched for the word “object,” and use
the top 2000 images. The specific set of images used is listed at
www.cse.wustl.edu/∼sg/accio/flickr-data-set. We
use the Flickr data set to illustrate how ACCIO! can successfully
be used for real image retrieval problems where the user is
interested in general object categories.

This paper is organized as follows. Section II briefly discusses
related work. ACCIO! and the segmentation-based representation
are described in Section III. An alternative salient point-based
image representation is presented in Section IV. Experimental
results are presented in Section V, and we conclude and discuss
future work in Section VI.

1Both benchmark data sets are available at
www.cse.wustl.edu/∼sg/accio.
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II. RELATED WORK

Several researchers have applied multiple-instance (MI) learn-
ing to localized CBIR [1], [3], [4], [21], [22], [33], [38]. Unlike
standard supervised learning in which each point (instance) is
labeled in the training data, in the MI model [7] each example is
a bag of points labeled as to whether any single point within the
bag is positive. The individual points are not given a label.

In this paper, we define the target concept as (~t, ~s) for point
~t = (t1, . . . , td) and scale (weight) vector ~s = (s1, . . . , sd).
Similarly, each hypothesis is represented by two feature vectors,
~h and ~s, where ~h represents the hypothesized feature vector and
~s is a weight vector. For an arbitrary point ~p = (p1, . . . , pd), the
weighted Euclidean distance is

dist~s(~t, ~p) =

√√√√ d∑
i=1

(si(pi − ti))2,

and the label for ~p is

`~p = e−dist~s(~t,~p)2 .

When the weighted Euclidean distance is 0, the label is 1, and as
this distance approaches ∞, the label approaches 0.

In standard supervised learning, the training data is

D = 〈(~p1, `p1), (~p2, `~p2), . . . , (~pm, `~pm
)〉,

where `~pi
is the label for ~pi. For example, consider when a color

histogram is used to represent an image as a single point. Target
~t is the feature vector representing the ideal color histogram, and
~s is the ideal weighting of the features. This approach captures
how machine learning approaches are often applied in CBIR to
use training data from relevance feedback to re-weight features.

In MI learning the examples are bags of points. More formally,
the training data is D = {〈B1, `1〉, 〈B2, `2〉, . . . 〈Bm, `m〉} where
Bi = {~pi,1, ~pi,2, . . . ~pi,|Bi|}. Let `i,j be the label of point
~pi,j ∈ Bi. Then `i = max{`i,1, `i,2, . . . , `i,|Bi|}. When each
bag contains a single point, MI learning reduces to standard
supervised learning. CBIR systems that use MI learning associate
a bag with each image, and each point in the bag is a feature
vector representing either (1) a fixed region of the image, (2) a
segment of the image, or (3) the window around a salient point.

Chen and Wang [4] and Bi et al. [3] considered the problem
of image categorization. For this problem, one would typically
have fairly large training sets for each image category. A related,
though different task, is to use a large set of images, each
annotated with several key words, to learn a correspondence
between objects and words (e.g., [2], [8]).

Salient point-based representations are also commonly used in
CBIR [15], [16], [20], [27], [31], [32]. In general, such methods
rank images based on the number of salient points that match
between a single query image and the images in the repository.
Such methods are global in that features from all the salient points
in the image are used in the ranking.

Scale invariant feature transform (SIFT) [20] was introduced as
a way to extract salient points that are invariant to many common
image transforms. Mikolajczyk and Schmid [23], [26] compared
a variety of approaches of identifying salient points, and found
SIFT to work best for image matching. SIFT and variations of
it have also been used for image retrieval [15], [16], [31], [32].
Some prior work has combined image segmentation and salient

points [17]. However, it uses global ranking methods, which are
not well-suited for localized CBIR.

III. ACCIO! - A NEW LOCALIZED CBIR SYSTEM

In the ACCIO! CBIR system, the user provides a query set
either directly or by adding the feedback set to the original query
image. The ACCIO! system first segments the image and converts
the segmented image into the MI representation using the bag
generator. Then ACCIO! uses generalized EM-DD2 (GEM-DD),
a generalized version of the EM-DD algorithm [37]. GEM-DD
performs a gradient search with multiple starting points to obtain
an ensemble of hypotheses that are consistent with both the
positive and negative images in the query set. Finally, a ranking
algorithm combines the hypotheses from the learning algorithm
to obtain an overall ranking of all images in the repository. The
user can then label some of the ranked images as “desired” or
“not desired’ to augment the query set.

A. Our Segmentation-Based Image Representation

We now present our new image representation, segmentation
with neighbors, which combines the robustness of segmentation
with the contextual awareness of neighbors. We first transform
all images into the YCrCb color space3 and use a wavelet texture
filter so that each pixel in the image has three color features
and three texture features [36]. Alternate features could be used
as desired. Next, the IHS segmentation algorithm [35] is used
to segment the image. A different segmentation algorithm could
likewise be used instead.

Since often it is the immediate surroundings that allow for a
more complex and descriptive definition of the content of the
image, we compute the neighbors to the north, south, east, and
west for every segment. The feature vector for each segment is
augmented with the feature differences between its features and
its neighbors’ features for all four neighbors. We use the feature
differences to allow for robustness against global changes in the
image, such as brightness changes from variable light or shade.

We view each segment x in image I as a 30-dimensional point
where the first six features are the average color and texture
values for x. The next six features hold the difference between
the average color and texture values of the northern neighbor and
x. Similarly there are six features for the difference information
between x and each of its other three cardinal neighbors. The
query set has one bag for each image in the query set.

B. The GEM-DD Algorithm

EM-DD [37] treats the knowledge of which point corresponds
to bag’s label as a missing attribute and applies the expectation-
maximization (EM) algorithm [6] to convert the MI learning
problem to a standard supervised learning problem. It starts with
an initial value for target point ~h and scale vector ~s, and then
repeatedly performs the following two steps. In the first step (E-
step), the current ~h and ~s are used to pick one point from each
bag that is most likely (given the generative model) to be the
one responsible for the label. In the second step (M -step), a two-
phase gradient search is used to find the ~h and ~s that maximizes
the DD measure4.

2The conference version [24] used Ensemble EM-DD, which has since been
improved to obtain the GEM-DD algorithm.

3ACCIO! could be easily modified to use a different color space, if desired.
4Technically, the negative log of the diverse density is minimized.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SPECIAL ISSUE, NOVEMBER 2008 3

We now describe our new MI algorithm, GEM-DD, which is
built upon EM-DD. It starts at an initial point from a randomly
selected set of positive bags, with different initial scale factors
used to weight the given segment relative to its neighbors.
Specifically, the initial weights used for the segment itself (versus
its neighbors) are 100%, 80%, 60%, 20% (all 5 regions, equally
weighted), and 0%, with the remaining percent equally divided
among the neighboring regions. Second, all initial scale factors are
adjusted based on the characteristics of the training data and the
floating point precision of the computing platform. Third, GEM-
DD performs feature normalization so all features are treated
equally when weighted equally. In particular it uses the training
data, normalizing the range of features values into the range 0 to
1. The same normalization factors are applied to the test data.

Finally, GEM-DD returns a set of hypotheses that help provide
several independent ways to characterize the desirable images.
Let H = {(~h1, ~s1), . . . , (~hk, ~sk)} be the set of hypotheses and
associated scales returned by GEM-DD, sorted in descending
order by their DD measure. Let I be an image in the image
repository that is segmented into r segments and represented
by the bag BI = {~p1, . . . , ~pr}. The Hausdorff distance between
hypothesis Hi = (~hi, ~si) and bag BI is given by

d(Hi, BI) = min
j=1,...,r

dist~si
(~hi, ~pj)

where dist is the weighted Euclidean distance.
DD and EM-DD use the minNLDD measure to rank bags ac-

cording to the “best” hypothesis H1. Zhang et al. [38] introduced
AvgAll, which ranks test bag B according to the average label

`B =
1

k
·

k∑
i=1

e−d(Hi,B)2 .

While one would expect that there are a set of hypotheses that
provide independent ways to characterize the images of interest
to the user, there are also some hypotheses that result from a
bad starting point for EM. Furthermore, one would expect that
hypotheses with a high DD value are “good” hypotheses while
the hypotheses with low DD values should be excluded. Thus,
we parameterize GEM-DD by an integer τ where 1 ≤ τ ≤ k, and
label bag B according to

`B =
1

τ
·

τ∑
i=1

e−d(Hi,B)2 .

Setting τ = 1 gives minNLDD, and setting τ = k gives AvgAll.
Finally, the images are ranked in decreasing order based on the
`B values.

IV. OUR NOVEL SALIENT POINT-BASED IMAGE

REPRESENTATION:

Salient point-based representations decouple the sensitivity of
a CBIR system from the quality of the segmentation. Traditional
uses of salient points for CBIR compute the feature vector
for a salient point according to the features of all pixels in
a window around the salient point [15], [16], [20], [27], [31],
[32]. However, since salient points are often on the boundary
of objects, the features assigned to a salient point often involve
pixels from different objects. While this is acceptable in standard
(global) CBIR systems, which use all portions of the image
for retrieval, for localized CBIR it is crucial to find a good

representation for individual segments that faithfully represents
local regions. Another drawback of using traditional salient point-
based extraction methods is these points often gather at more
textured areas, so many salient points capture the same portions
of the image.

We introduce a new salient point representation for localized
CBIR that is achieved using two orthogonal techniques. First, we
use image segmentation to form a mask that limits the number
of salient points in each segment while maintaining the diversity
of the salient points. Second, we use the local characteristics of
the pixel window around a salient point to determine how to split
the window into two sub-windows, and assign each sub-window
features based on both it and its neighboring sub-window. We
now describe these two methods in more depth.

A. SPARSE (Salient Points Auto-Reduction using SEgmentation)
Our SPARSE image representation limits the number of salient

points in each segment while maintaining the diversity needed for
localized CBIR. SPARSE first applies a salient point detection
algorithm to the image. We use a Harr wavelet-based salient
point detection method. Beginning at the coarsest level of wavelet
coefficients, we keep track of the salient points from level to level
by finding the points with the highest coefficients on the next finer
level among those used to compute the wavelet coefficients at the
current level. The saliency value of a salient point is the sum
of the wavelet coefficients of its parent salient points from all
coarser scales. Note, any salient point detection method can be
used here instead, with little modification.

Next a segmentation algorithm is applied to the image. The
segmentation algorithm we use is a clustering-based segmenta-
tion method [10] that uses the Euclidean distance between 6-
dimensional feature vectors, with 3 color features and 3 texture
features, as its similarity measure. The resulting segmentation is
used to reduce the number of salient points. Specifically, SPARSE
keeps at most k salient points in each segment, by keeping those
with the highest saliency value. In our implementation, k = 3.

Fig. 1 shows examples of salient points detected using
SPARSE. For comparison, we also show the salient points de-
tected by the Harr wavelet-based salient points detection method,
and the SIFT [20] method. The wavelet-based method selects the
top 200 salient points for each image. SPARSE reduces it to at
most 96 salient points per image. SIFT selects 392 salient points
for the tea box, and 288 salient points for the coke can. When
using SPARSE the salient points predominantly gather at complex
objects, whereas with the wavelet-based method the salient points
gather at the edges. While the wavelet-based method does reduce
the number of salient points on the textured region (such as at
the printed words on the calendar and tea box), SPARSE further
reduces the number of salient points at textured regions.

B. VSWN: Our Salient Point Representation

We now describe our variably-split window with neighbor
(VSWN) representation. Since salient points are often on the
boundary of objects, the features assigned to a salient point
involve pixels from different objects, which is not good for
localized CBIR because only one of these objects might be of
interest. If we divide the window, we can better capture the color
and texture of an individual object.

For each salient point, VSWN uses the local characteristics of
the window around each salient point to split the window in either
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Original image SPARSE Wavelet-based method SIFT

Fig. 1. Salient points detection with SPARSE, the Harr Wavelet-based method, and SIFT.

the horizontal, vertical, or one of the two diagonal directions.
The VSW (variably split window) technique adaptively chooses
the best split. VSW applies a wavelet transform on the pixels
in the window, and measures the average coefficients in the HL
(vertical), LH (horizontal), and HH (up-right diagonal). We also
flip the window around the vertical to compute a flipped-HH
coefficient (up-left diagonal). If the LH and HL channels have
similar coefficients, then we use the split associated with the
larger of the HH and flipped-HH channel. Otherwise, we use the
split based on the largest of the four channels. While the best
segmentation of the region is unlikely to be one of the four splits
considered (since it is an 8x8 window) the selected split serves
as a sufficiently good approximation. If desired, we could further
subdivide each sub-window.

Second, as was the case for segmentation with neighbors, for
salient points it is advantageous to incorporate information about
the neighboring sub-window to provide additional context. The
two sub-windows for each salient point are represented via three
color features and three texture features. VSWN augments the
feature vector for each sub-window with the difference between
its values and the other sub-window’s values for each of the six
features. We use the feature differences to allow for robustness
against global changes in the image, such as brightness changes
from variable light or shade. Since we do not know which sub-
window might hold the object of interest, we create two 12-
dimensional feature vectors for each salient point: one for each
sub-window as the object of interest.

V. EXPERIMENTAL RESULTS

We compare the system-level performance of ACCIO! , SIM-
PLIcity [14], [30], and SBN [22] on the SIVAL and a COREL nat-
ural scenes data sets, both with small query sets (2-16 images), for
which ACCIO! was designed, and with the traditional CBIR setting
of a single positive query image. We also compare the perfor-
mance of our SPARSE+VSWN salient point-based representation
to that of SIFT and the wavelet-based method. On the Flickr data
set we compare our segmentation-based and salient point-based
representations. Unless otherwise indicated, ACCIO! results were
produced using the segmentation-based representation, where τ

was set roughly equal to the bag size. Thus, τ = 25 for the
segmentation-based representation, and τ = 75 for the salient

point-based representations. For results that used a single query
image, we set τ = |H|.

For the SBN algorithm we replace DD by the EM-DD algo-
rithm because of its performance gains in both retrieval accuracy
and efficiency [38]. Since SIMPLIcity is designed to use a single
positive example, we created a variant of it that uses any size
query image set. Let P be the set of positive images, and let
N be the set of negative images. For image q in the query set
and image x in the image repository, let rq(x) be the ranking
SIMPLIcity gives to image x when the query image is q. (The
highest rank image is rank 0.) Our variation of SIMPLIcity ranks
the images in decreasing order based on∏

q∈P

(
1− rq(x)

n

)
·

∏
q∈N

rq(x)

n
.

We selected this measure since it is similar to the definition of
diverse density of a point t, DD(t) =

∏
q∈P∪N Pr(t|q). For an

image q ∈ P , (1 − rq(x)/n) can be viewed as the probability
that x is positive given that q is positive. Similarly, for an image
q ∈ N , rq(x)/n can be viewed as the probability that x is positive
given that q is negative. When given a single positive image, the
ranking is the same as that given by the original SIMPLIcity
algorithm [14], [30].

As our measure of performance, we use the area under the ROC
curve [12] that plots the true positive rate as a function of the false
positive rate. The area under the ROC curve (AUC) is equivalent
to the probability that a randomly chosen positive image will be
ranked higher than a randomly chosen negative image. Unlike
the precision-recall curve, the ROC curve is insensitive to the
ratio of positive to negative examples in the image repository.
Regardless of the fraction of the images that are positive, for a
random permutation the AUC is 0.5. For all AUCs reported, we
repeat each experiment with 30 random selections of the positive
and negative examples and use these to compute the average AUC
and the 95% confidence intervals for the AUC.

A. System Performance

Table I compares the average performance (over all categories)
of ACCIO! , SIMPLIcity and SBN for the SIVAL and the natural
scenes data sets. Fig. 2 compares all 25 object categories of
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SIVAL Natural Scenes
system 8 pos, 8 neg Single pos 8 pos, 8 neg Single Pos
Accio! 81.8 53.5 83.6 67.2
Accio! (SPARSE+VSWN) 81.6 56.3 - -
SIMPLIcity 57.9 55.7 74.8 73.7
SBN 53.9 50.3 73.6 61.4
Accio! (conference version) 74.6 61.0 87.7 74.5

TABLE I
SUMMARY OF AUC VALUES AVERAGED OVER THE CATEGORIES OF SIVAL AND COREL NATURAL SCENES DATASETS.

SIVAL when the query set contains 8 random positive and 8
random negative examples. For 2 categories - “LargeSpoon”
and “CandleWithHolder” - SIMPLIcity’s segmentation algorithm
failed on a few images, so results could not be provided. For
both representations, in every category ACCIO! ’s performance is
statistically better than that of both SIMPLIcity and SBN, with
the exception of “LargeSpoon” for SBN, and “RapBook” for
SIMPLIcity. ACCIO! using segmentation with neighbors has an
average improvement of 51.7% over SIMPLIcity and 41.4% over
SBN. ACCIO! using SPARSE+VSWN has an average improve-
ment of 51.2% over SIMPLIcity and 41.0% over SBN.

Fig. 2 also compares the SPARSE+VSWN and the segmenta-
tion with neighbors representation of ACCIO! . We see similar per-
formance in 17 of 25 categories. In 5 categories, the segmentation-
based approach performs statistically better, and in 3 categories,
SPARSE+VSWN is statistically better. So overall, their results are
comparable. Segmentation with neighbors encodes its neighbors
in a manner that preserves orientation which is advantageous
for some tasks (e.g., when distinguishing a waterfall from a
river). Furthermore, encoding four neighbors, instead of just
one, captures more contextual information for each segment. On
the other hand, SPARSE+VSWN has several advantages over
segmentation with neighbors. The reduction in dimensionality
from 30 to 12 improves the time complexity. Also VSWN’s use
of a single neighbor that is both mirror invariant and rotation
invariant, allows it to perform better on categories in which the
images experience significant rotation (90◦ and 180◦). While the
salient points currently encode only the same information as
the segmentation-based method, salient points can be encoded
with a multitude of additional features not easily derived from
segmentation methods, such as the orientation histogram used by
SIFT. Additionally, salient points by their nature can capture much
finer detail in the image than segmentation.

Since SIMPLIcity was designed for a single positive query
image, we also considered when the query set contains only a
single positive image (not shown). On average ACCIO! obtains a
4.3% improvement in performance over SIMPLIcity, and a 15.6%
improvement over SBN. For our alternative SPARSE+VSWN
representation, ACCIO! obtains a 12.4% improvement in perfor-
mance over SIMPLIcity, and a 24.5% improvement over SBN.
The version of SIMPLIcity we created to make use of a query
set with multiple images did improve performance over having
a single query image in 12 of the 23 categories for which we
obtained data.

Fig. 3 shows the performance of ACCIO! when using the
segmentation with neighbors representation on the Flickr data
set for varying query set sizes. Likewise, Fig. 4 shows the
performance of ACCIO! when using SPARSE+VSWN. As the
size of the training data increases, in general we both get better

retrieval performance, and also the variation in performance is
reduced. For some categories increasing the training size has a
very small impact (e.g., waterfall, samurai helmet), yet for others
(e.g., American flag, Pepsi can) the impact is quite large. When
there is some aspect of a category that is very distinctive then the
smaller training set can be effective. However, when the object
is defined by fairly typically occurring colors/textures (e.g., the
color red) or in a category with a lot of variation (e.g., fire flame),
having a larger query set can really help performance.

We now compare the performance of these two representations
when there are 8 positive and 8 negative examples. ACCIO!

using segmentation with neighbors performs statistically better on
“Snowboarding,” “Sushi,” and “Persian Rug.” Conversely, though
ACCIO! using SPARSE+VSWN does not perform statistically
better in any of the image categories, there is a noticeable
improvement over segmentation with neighbors on the “American
Flag,” “Fire Flame,” “Pepsi Can,” and “Coca-Cola Can” cate-
gories. Since the “American Flag,” “Pepsi Can,” and “Coca-Cola
Can” images all contain a specific complex object of interest,
there will be a large number of salient points in each image
corresponding to that object. Since the object is specific, the
colors and textures defining the object are very well defined, with
variations due only to lighting, shading, and noise. Therefore, the
sets of salient points for these objects serve as effective identifiers
enabling the SPARSE+VSWN method to perform well on such
categories. The “Fire Flame” category, does not target as specific
an object, but the nature of fire does lend itself well to a small
set of easily distinguishable colors and textures.

The “Snowboarding,” “Sushi,” and “Persian Rug” categories do
not contain a specific object, but include objects with common
sets of color schemes and textures, which can be effectively
captures by whole-segment feature characteristics. As long as the
segmentation algorithm can effectively segment out the object
regions, and there are sufficient training examples to characterize
both the most common variations in the object’s color and
texture and the spatial relationship between the object(s) of
interest, ACCIO! using segmentation with neighbors generally
performs well. For example, in “Snowboarding”, segmentation
with neighbors searches for regions containing snow bordered by
one or more neighboring regions containing trees, mountains, or
sky. While these categories can be characterized by a variety of
different color schemes and textures, with effective segmentation
and sufficient training data, segmentation with neighbors achieves
good performance for these categories.

B. Comparison of Salient Point-Based Representations

In this section we compare the performance of ACCIO!

when using salient point-based representations. Fig. 5 com-
pares the three salient point extraction methods: Wavelet, SIFT,
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Fig. 3. Results from our segmentation with neighbors representation on the Flickr data set.
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Flickr Data Set:  SPARSE+VSWN image representation
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Fig. 4. Results from our SPARSE+VSWN representation on the Flickr data set.

Salient Point Extraction
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Fig. 5. Comparing salient point methods on the SIVAL data set where the query set has 8 positive and 8 negative examples.
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New Salient Point Methods 
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Fig. 6. Comparing salient point methods on SIVAL data set for a query set of 8 positive and 8 negative examples.

and SPARSE+VSWN. In these experiments, both SPARSE and
Wavelet use the same salient point extraction and representation
methods (3 color and 3 texture dimensions). The primary dif-
ference between them is where the salient points are placed in
the image. SIFT both uses a different feature extraction method,
placing the salient points differently, and uses a more complex
feature representation. SPARSE outperforms Wavelet in 23 of 25
categories, 16 of which are statistically significant. The use of
SPARSE can also improve the algorithm efficiency by reducing
the number of feature vectors per bag, and hence the number of
computations.

The SIFT feature vector has 128 dimensions that describe the
local gradient orientation histogram around a salient point. Results
using SIFT were generated using 5 random selections of the train-
ing data (as opposed to 30) since the high dimensionality makes
it very computationally intensive. SIFT performs 5.9% better than
Wavelet over all categories. However, SPARSE outperforms SIFT
by 3.2% (over all categories), despite its relatively simpler feature
representation.

We also compared the performance obtained from varying
the salient point extraction method. The average AUC values
(across all categories) of SIVAL are 81.6 for SPARSE+VSWN,
80.3 for SPARSE, 77.0 for VSWN, 73.5 for Wavelet, and 77.9
for SIFT. Both SPARSE and VSWN can help improve retrieval
performance, and when used together they improve performance
further.

Fig. 6 independently compares the effect of using SPARSE
and VSWN to the standard wavelet-based salient points on
SIVAL. Adding VSWN to Wavelet leads to a 4.8% improvement
when averaged over all categories with statistically significant

improvements in nine categories. Adding SPARSE to Wavelet
leads to a 9.3% improvement when averaged over all categories.
When both SPARSE and VSWN are added to Wavelet, an 11.0%
increase in performance occurs.

VI. CONCLUSIONS AND FUTURE WORK

We have presented ACCIO! , a localized CBIR system that does
not assume that the desired object(s) are in a fixed location or
have a fixed size. We have demonstrated that ACCIO! outperforms
existing systems for localized CBIR on both a natural scenes
image repository and SIVAL our new benchmark data set. Our
experimental results when using the Flickr data set, demonstrate
that ACCIO! can successfully be used for real image retrieval
problems where the user is interested in general object categories.

We introduce the SPARSE technique, which uses segmentation
as a filter to reduce the total number of salient points while still
maintaining diversity. Finally, we introduce the VSWN salient
point representation, which splits salient points on region bound-
aries into two salient points, characterizing the separate objects
at the boundary.

There are many directions for future work. We believe that
ACCIO! can be improved further by making further improvements
to GEM-DD, by employing improved segmentation algorithms,
and perhaps by the careful introduction of some features to
represent shape. For SPARSE, an important area of future work
is to perform experiments to determine the sensitivity to k, the
number of salient points per segment, and develop methods to
select the best value for k.
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