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Homework #1: Introduction, Asymptotics,Recurrences, Amortization
Due Date: Tuesday, 28 January 2003

Guidelines

Please make sure you adhere to the policies on collaboration and academic hon-
esty as outlined in Handout #1.

A note about problem numbers in CLRS

There is a somewhat confusing numbering system for problems from the text-
book. The book has what it terms “Exercises” which are at the end of each
section, and “Problems” which are at the very end of each chapter. For exam-
ple, Exercise 3.1-1 is at the end of Section 3.1 on page 50, whereas Problem 3-1
is at the end of Chapter 3, on page 57.

Reading

Read Ch. 1–4 and Ch. 17 of CLRS, as well as the lecture notes regarding the
maximum subarray problem.

Practice

These exercises are purely for your own practice. You should not turn them in,
and you are free to discuss them fully with others.

• Do CLRS 3.1-1, 3.1-2.
• Do CLRS 3.1-4.
• Do CLRS 3.1-6.
• Do CLRS 4.2-4, 4.2-5.
• Do CLRS 4.3-1.
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Problems

Problem A “You may discuss ideas with other students.”
We discussed five algorithms for the maximum subarray problem, based
on Chapter 8 of Programming Pearls by Jon Bentley. Our goal for this
problem is to run experiments to gather data on the efficiency of the al-
gorithms. Fortunately, the author provides source code in C for the five
algorithms (a link can be found from the lecture notes). You may rely on
that source code if you wish, though you may need to make some alter-
ations. You may also choose to develop your own similar code in another
language if your prefer.

The experiment is as follows. An array is created containing n random
values in the range [-1,1]. Then one of the algorithms for finding the
maximum subarray can be timed. We want you to fill in as much of
the following table as possible. For each column, fill in as many times
as you can reasonably gather, stopping when the running times become
“unreasonable” (e.g., longer than 5–10 minutes?)

Algorithm
1 2 2b 3 4

n time time
n3 time time

n2 time time
n2 time time

n logn time time
n

...
210

212

214

216

218

220

222

...
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Problem B “Work entirely on your own.”
Rank the following functions by order of growth, i.e., find an arrange-
ment g1, g2, . . . , g30 of the functions satisfying g1 = Ω(g2), g2 = Ω(g3), . . . ,
g29 = Ω(g30). Partition your list into equivalence classes such that f(n)
and g(n) are in the same class iff f(n) = Θ(g(n)).
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[Note: We do not require formal proof for this problem, simply the ordering
and the equivalence classes.]

Problem C “Work entirely on your own.”
Let f(n) and g(n) be functions such that f(n) = Ω(1) and g(n) = Ω(1).
Prove or disprove each of the following conjectures.

i. f(n) = O(g(n)) implies g(n) = O(f(n)).

ii. f(n) + g(n) = Θ(min(f(n), g(n))).

iii. f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))), where lg(g(n)) > 0
and f(n) ≥ 1 for all sufficiently large n.

iv. f(n) = O(g(n)) implies 2f(n) = O(2g(n)).

v. f(n) = O((f(n))2).

vi. f(n) = O(g(n)) implies g(n) = Ω(f(n)).

vii. f(n) = Θ(f(n/2)).

viii. f(n) + g(n) = Θ(f(n)), where g(n) = o(f(n)).

[Your proofs must be formal, although for false conjectures a specific coun-
terexample constitutes a valid proof.]

Problem D “You may discuss ideas with other students.”
Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by adding to each node
x the field size[x] giving the number of keys stored in the subtree rooted
at x. Let α be a constant in the range 1/2 ≤ α < 1. We say that a given
node x is α-balanced if
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size[left[x]] ≤ α · size[x]
and

size[right[x]] ≤ α · size[x].
The tree as a whole is α-balanced if every node in the tree is α-balanced.
The following amortized approach to maintaining weight-balanced trees
was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given
a node x in an arbitrary binary search tree, show how to rebuild the
subtree rooted at x so that it becomes 1/2-balanced. Your algorithm
should run in time Θ(size[x]), and it can use O(size[x]) auxiliary
storage.

b. Show that performing a search in an n-node α-balanced binary search
tree takes O(lgn) worst-case time.

For the remainder of this problem, assume that the constant α is strictly
greater than 1/2. Suppose that Insert and Delete are implemented as
usual for an n-node binary search tree, except that after every such op-
eration, if any node in the tree is no longer α-balanced, then the subtree
rotted at the highest such node in the tree is “rebuilt” so that it becomes
1/2-balanced.

We shall analyze this rebuilding scheme using the potential method. For
a node x in a binary search tree T , we define

∆(x) = |size[left[x]]− size[right[x]]|,

and we define the potential of T as

Φ(T ) = c
∑

x∈T :∆(x)≥2

∆(x),

where c is a sufficiently large constant that depends on α.

c. Argue that any binary search tree has nonnegative potential and that
a 1/2-balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node
subtree. How large must c be in terms of α in order for it to take
O(1) amortized time to rebuild a subtree that is not α-balanced?

e. Show that inserting a node into or deleting a node from an n-node
α-balanced tree costs O(lgn) amortized time.
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Problem E (EXTRA CREDIT) “You may discuss ideas with other students.”
Finding the missing integer

An array A[1..n] contains all the integers from 0 to n except one. It
would be easy to determine the missing integer in O(n) time by using
an auxiliary array B[0..n] to record which numbers appear in A. In this
problem, however, we cannot access an entire integer in A with a single
operation. The elements of A are represented in binary, and the only
operation we can use to access them is “fetch the jth bit of A[i],” which
takes constant time.

Show that if we use only this operation, we can still determine the missing
integer in O(n) time.

[To make the analysis cleaner, we will charge your algorithm only for the
number of “bit-fetch” operations. The input to the algorithm consists of
an array of n numbers, each of which is comprised of blg nc+ 1 bits. Give
an algorithm which can find the missing number by fetching only O(n)
bits.]


