
comp363 Handout #14
Design and Analysis of Computer Algorithms

Michael Goldwasser

Loyola University Chicago Thursday, 27 April 2003

Homework #5: Dynamic Programming
Due Date: Tuesday, 8 April 2003

Guidelines

Please make sure you adhere to the policies on collaboration and academic hon-
esty as outlined in Handout #1.

Reading

Review Ch. 15 of CLRS.

Problems

Problem A (40 points) “You may discuss ideas with other students.”
Given a sequence of numbers X = 〈x1, x2, . . . , xn〉, a monotonically in-

creasing subsequence is a sequence X ′ = 〈xa1
, xa2

, . . . , xak
〉 such that 1 ≤

a1 < a2 < . . . < ak ≤ n (i.e., the sequence is truly a subsequence), and that
xa1

≤ xa2
≤ . . . ≤ xak

(i.e., the sequence is monotonically increasing). Our
goal is to find the longest monotonically increasing sequence. Actually, to
make things easier, let’s assume that we are only interested in knowing the
length of the longest such sequence (although all of these techniques can
be extended to build the actual sequence).

For example if X = 〈5, 1, 4, 2, 3, 8, 6, 7〉, then the longest monotonically
increasing subsequence is 〈1, 2, 3, 6, 7〉, with length 5.

To design a dynamic programming algorithm we will consider the following
subproblem for each k ∈ {1, . . . , n}, namely, what is the longest monoton-
ically increasing subsequence which ends with xk. If we let L(k) equal
the length of the longest such sequence which ends with xk, we claim the
following recursive formula exists,

L(k) = 1 + max
j∈{1,...,k−1}

with xj≤xk

L(j) (1)

a. Prove Equation (1).
(Make sure you prove both the “≥” and the “≤” implied by equality.)

b. Show that the length of the longest monotonically increasing sequence
can be computed using dynamic programming based directly on Equa-
tion (1). What is the running time of the algorithm?



comp363: Handout #14 2

Problem B (60 points) “You may discuss ideas with other students.”
Coin Changing

Consider the problem of making change for n cents using the fewest number
of coins. Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters,
dimes, nickels, and pennies. Prove that your algorithm yields an
optimal solution.

b. Suppose that the available coints are in the denominations that are
powers of c, e.e., the denominations are c0, c1, . . . , ck for some integers
c > 1 and k ≥ 1. Show that the greey algorithm always yields an
optimal solution.

c. Give a set of coin denominations and a value for n, such that the
greedy algorithm does not yield an optimal solution. Your set should
include a penny so that there is a solution for every value of n.

d. Give an O(nk)-time dynamic programming algorithm that makes
change for any set of k different coin denominations, assuming that
one of the coins is a penny.


