Thursday, 27 April 2003

Homework #5:Dynamic ProgrammingDue Date:Tuesday, 8 April 2003

Guidelines

Please make sure you adhere to the policies on collaboration and academic honesty as outlined in Handout #1.

Reading

Review Ch. 15 of CLRS.

Problems

Problem A (40 points) "You may discuss ideas with other students."

Given a sequence of numbers $X = \langle x_1, x_2, \ldots, x_n \rangle$, a monotonically increasing subsequence is a sequence $X' = \langle x_{a_1}, x_{a_2}, \ldots, x_{a_k} \rangle$ such that $1 \leq a_1 < a_2 < \ldots < a_k \leq n$ (i.e., the sequence is truly a subsequence), and that $x_{a_1} \leq x_{a_2} \leq \ldots \leq x_{a_k}$ (i.e., the sequence is monotonically increasing). Our goal is to find the *longest* monotonically increasing sequence. Actually, to make things easier, let's assume that we are only interested in knowing the *length* of the longest such sequence (although all of these techniques can be extended to build the actual sequence).

For example if $X = \langle 5, 1, 4, 2, 3, 8, 6, 7 \rangle$, then the longest monotonically increasing subsequence is $\langle 1, 2, 3, 6, 7 \rangle$, with length 5.

To design a dynamic programming algorithm we will consider the following subproblem for each $k \in \{1, ..., n\}$, namely, what is the longest monotonically increasing subsequence which ends with x_k . If we let L(k) equal the *length* of the longest such sequence which ends with x_k , we claim the following recursive formula exists,

$$L(k) = 1 + \max_{\substack{j \in \{1,\dots,k-1\}\\ \text{with } x_j \le x_k}} L(j) \tag{1}$$

a. Prove Equation (1).

(Make sure you prove both the " \geq " and the " \leq " implied by equality.)

b. Show that the *length* of the longest monotonically increasing sequence can be computed using dynamic programming based directly on Equation (1). What is the running time of the algorithm?

Problem B (60 points) "You may discuss ideas with other students."

Coin Changing

Consider the problem of making change for n cents using the fewest number of coins. Assume that each coin's value is an integer.

- a. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pennies. Prove that your algorithm yields an optimal solution.
- b. Suppose that the available coints are in the denominations that are powers of c, e.e., the denominations are c^0, c^1, \ldots, c^k for some integers c > 1 and $k \ge 1$. Show that the greey algorithm always yields an optimal solution.
- c. Give a set of coin denominations and a value for n, such that the greedy algorithm does not yield an optimal solution. Your set should include a penny so that there is a solution for every value of n.
- d. Give an O(nk)-time dynamic programming algorithm that makes change for any set of k different coin denominations, assuming that one of the coins is a penny.