
CSCI 1020 – Spring 2018 Handout: Homework 05
Introduction to Computer Science: Bioinformatics
Michael H. Goldwasser
Saint Louis University Monday, 19 March 2018

Overview

For this homework you must compute two versions of sequence alignment.

• Maximizing the longest common subsequence (LCS)

• Optimizing the alignment when there is

◦ +1 for an exact match

◦ -1 for a mismatch

◦ -1 for an inserted gap

We will work through an example for illustration, using strings

X = AATGGATTAG

Y = CTCCCAGGTA

and for the sake of this discussion, we will use a 1-index labeling of X = X1X2 . . . Xm

and Y = Y1Y2 . . . Yn.

LCS

We will compute the length of the longest common subsequence using the following
recursive formula. For strings X and Y with lengths |X| = m and |Y | = n, we define
LCS[j][k] to be the longest common subsequence between the first j characters of X and
the first k characters of Y . This can be computed with the following formula.

LCS[j][k] =

0 if j = 0 or k = 0
1 + LCS[j − 1][k − 1] if j, k > 0 and Xj = Yk

max(LCS[j − 1][k], LCS[j][k − 1]) otherwise

In affect, what we are interested in is the value LCS[m][n] as if we have the first m
characters of X then we have the entire string, and likewise for Y . However, the table of
LCS values can be computed row-by-row starting with j = 0, then j = 1, and so forth.
For our sample X and Y , the full table appears as follows (with the highlighted cells
illustrating the subsequent reconstruction of the alignment that achieves the optimal).

2 CSCI 1020 – Spring 2018: Handout: Homework 05

C T C C C A G G T A
0 1 2 3 4 5 6 7 8 9 10 k

0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 1 1 1 1 1
A 2 0 0 0 0 0 0 1 1 1 1 2
T 3 0 0 1 1 1 1 1 1 1 2 2
G 4 0 0 1 1 1 1 1 2 2 2 2
G 5 0 0 1 1 1 1 1 2 3 3 3
A 6 0 0 1 1 1 1 2 2 3 3 4
T 7 0 0 1 1 1 1 2 2 3 4 4
T 8 0 0 1 1 1 1 2 2 3 4 4
A 9 0 0 1 1 1 1 2 2 3 4 5
G 10 0 0 1 1 1 1 2 3 3 4 5

j
From this table, we see that the longest common subsequence has length 5. We can

reconstruct the actual sequence alignment that produces that common subsequence by
examining the table starting with j = m and k = n. That 5 must come from one of
two cases. If X10 = Y10 then it would be that the 5 was set as 1 + LCS[10][10]. But in
this case, since X10 = G and Y10 = A, the final recursive rule must have been used with
LCS[10][10] = max(LCS[10][9], LCS[9][10]). Examining the table, we see that this max
was achieved by LCS[9][10]. So in our reconstruction of the sequence alignment, we will
match the final G of X with an inserted gap at the end of Y , thus

X: ...g

Y: ...-

(Note: we use lowercase letters to denote unmatched characters.) Continuing, we see
that the value of LCS[9][10] = 5 was set because X9 = Y10 = A and thus LCS[9][10] =
1 + LCS[8][9] and that are alignment reconstruction will look something like

X: ...Ag

Y: ...A-

Likewise, LCS[8][9] = 1 +LCS[7][8] as X8 = Y9 = T, and our partial alignment becomes

X: ...TAg

Y: ...TA-

Continuing in this way, we determine that it must be that LCS[7][8] = LCS[6][8] =
LCS[5][8] and that LCS[5][8] = 1 + LCS[4][7] given the match of X5 = Y8 = G. Contin-
uing in this way, we reach the complete alignment

-----aAtGGatTAg

ctccc-A-GG--TA-

Since not penalized for mismatches, we could further condense this alignment to

----aAtGGatTAg

ctcccA-GG--TA-

CSCI 1020 – Spring 2018: Handout: Homework 05 3

Scored Alignment

For our second scoring, we continue to have a +1 benefit for a match, but we introduce a
-1 penalty for a gap or a -1 penalty for leaving two mismatched characters aligned. Our
goal is to compute a score of an optimal alignment, and so we introduce the notation
OPT [j][k] as the optimal score that can be achieved when aligning the first j characters
of X with the first k characters of Y . We claim the following recursive definitions.

OPT [j][k] =

−k if j = 0
−j if k = 0
1 + OPT [j − 1][k − 1] if j, k > 0 and Xj = Yk

max(OPT [j − 1][k],
OPT [j][k − 1],
OPT [j − 1][k − 1])− 1 otherwise

Revisiting our example X and Y , this formula would produce the following table:
C T C C C A G G T A

0 1 2 3 4 5 6 7 8 9 10 k

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
A 1 -1 -1 -2 -3 -4 -5 -4 -5 -6 -7 -8
A 2 -2 -2 -2 -3 -4 -5 -4 -5 -6 -7 -6
T 3 -3 -3 -1 -2 -3 -4 -5 -5 -6 -5 -6
G 4 -4 -4 -2 -2 -3 -4 -5 -4 -4 -5 -6
G 5 -5 -5 -3 -3 -3 -4 -5 -4 -3 -4 -5
A 6 -6 -6 -4 -4 -4 -4 -3 -4 -4 -4 -3
T 7 -7 -7 -5 -5 -5 -5 -4 -4 -5 -3 -4
T 8 -8 -8 -6 -6 -6 -6 -5 -5 -5 -4 -4
A 9 -9 -9 -7 -7 -7 -7 -5 -6 -6 -5 -3
G 10 -10 -10 -8 -8 -8 -8 -6 -4 -5 -6 -4

j
Again, we can later reconstruct the actual alignment by considering, starting with

OPT [m][n], how each cell depends upon the cell for one of the subproblems, which
designates when we have aligned matches, aligned mismatches, or inserted gaps. The
highlighted path in this table shows one possible way to achieve the optimal score, cor-
responding to the following actual alignment:

aaT-ggA-tTAg

-cTcccAggTA-

Your Task

We will be providing you with a different choice of strings X and Y and you must
produce both the full table and the subsequently reconstructed alignment for each of the
two scoring metrics: LCS and OPT .

