
CSCI 1020 – Spring 2019 Handout: Sequence Alignment
Introduction to Computer Science: Bioinformatics
Michael H. Goldwasser
Saint Louis University Monday, 11 February 2019

Overview

The Needleman-Wunsch Algorithm can be used to compute the optimal pairwise global
alignment under a general scoring system which includes an arbitrary reward/penalty for
matched/mismatched characters as well as an arbitrary penalty for each gap introduced.

In this document, we provide a full walkthrough of the algorithm for computing
the optimal alignment score and reconstructing an actual alignment that produces the
optimal score. We do so with two separate scoring functions.

• In our first walkthrough, we consider a simple metric with a score that includes

◦ +1 for an exact match

This is the so-called Longest Common Subsequence metric.

• For the second walkthrough, we score an alignment with

◦ +1 for an exact match

◦ -1 for a mismatch

◦ -1 for an inserted gap

We will work through an example for illustration, using strings

X = AATGGATTAG

Y = CTCCCAGGTA

For discussion, we use 1-index labeling of X = X1X2 . . . Xm and Y = Y1Y2 . . . Yn.

LCS

We will compute the length of the longest common subsequence using the following
recursive formula. For strings X and Y with lengths |X| = m and |Y | = n, we define
LCS[j][k] to be the longest common subsequence between the first j characters of X and
the first k characters of Y . This can be computed with the following formula.

LCS[j][k] =


0 if j = 0 or k = 0
1 + LCS[j − 1][k − 1] if j, k > 0 and Xj = Yk

max(LCS[j − 1][k], LCS[j][k − 1]) otherwise

In effect, what we are interested in is the value LCS[m][n] as if we have the first m
characters of X then we have the entire string, and likewise for Y . However, the table of

2 CSCI 1020 – Spring 2019: Handout: Sequence Alignment

LCS values can be computed row-by-row starting with j = 0, then j = 1, and so forth.
For our sample X and Y , the full table appears as follows (with the highlighted cells
illustrating the subsequent reconstruction of the alignment that achieves the optimal).

C T C C C A G G T A
0 1 2 3 4 5 6 7 8 9 10 k

0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 1 1 1 1 1
A 2 0 0 0 0 0 0 1 1 1 1 2
T 3 0 0 1 1 1 1 1 1 1 2 2
G 4 0 0 1 1 1 1 1 2 2 2 2
G 5 0 0 1 1 1 1 1 2 3 3 3
A 6 0 0 1 1 1 1 2 2 3 3 4
T 7 0 0 1 1 1 1 2 2 3 4 4
T 8 0 0 1 1 1 1 2 2 3 4 4
A 9 0 0 1 1 1 1 2 2 3 4 5
G 10 0 0 1 1 1 1 2 3 3 4 5

j
From this table, we see that the longest common subsequence has length 5. We can

reconstruct the actual sequence alignment that produces that common subsequence by
examining the table starting with j = m and k = n. That 5 must come from one of
two cases. If X10 = Y10 then it would be that the 5 was set as 1 + LCS[10][10]. But in
this case, since X10 = G and Y10 = A, the final recursive rule must have been used with
LCS[10][10] = max(LCS[10][9], LCS[9][10]). Examining the table, we see that this max
was achieved by LCS[9][10]. So in our reconstruction of the sequence alignment, we will
match the final G of X with an inserted gap at the end of Y , thus

X: ...g

Y: ...-

(Note: we use lowercase letters to denote unmatched characters.) Continuing, we see
that the value of LCS[9][10] = 5 was set because X9 = Y10 = A and thus LCS[9][10] =
1 + LCS[8][9] and that are alignment reconstruction will look something like

X: ...Ag

Y: ...A-

Likewise, LCS[8][9] = 1 +LCS[7][8] as X8 = Y9 = T, and our partial alignment becomes

X: ...TAg

Y: ...TA-

Continuing in this way, we determine that it must be that LCS[7][8] = LCS[6][8] =
LCS[5][8] and that LCS[5][8] = 1 + LCS[4][7] given the match of X5 = Y8 = G. Contin-
uing in this way, we reach the complete alignment

-----aAtGGatTAg

ctccc-A-GG--TA-

CSCI 1020 – Spring 2019: Handout: Sequence Alignment 3

Since not penalized for mismatches, we could further condense this alignment to

----aAtGGatTAg

ctcccA-GG--TA-

Scored Alignment

For our second scoring, we continue to have a +1 benefit for a match, but we introduce a
-1 penalty for a gap or a -1 penalty for leaving two mismatched characters aligned. Our
goal is to compute a score of an optimal alignment, and so we introduce the notation
OPT [j][k] as the optimal score that can be achieved when aligning the first j characters
of X with the first k characters of Y . We claim the following recursive definitions.

OPT [j][k] =



−k if j = 0
−j if k = 0
1 + OPT [j − 1][k − 1] if j, k > 0 and Xj = Yk

max(OPT [j − 1][k],
OPT [j][k − 1],
OPT [j − 1][k − 1])− 1 otherwise

Revisiting our example X and Y , this formula would produce the following table:
C T C C C A G G T A

0 1 2 3 4 5 6 7 8 9 10 k

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
A 1 -1 -1 -2 -3 -4 -5 -4 -5 -6 -7 -8
A 2 -2 -2 -2 -3 -4 -5 -4 -5 -6 -7 -6
T 3 -3 -3 -1 -2 -3 -4 -5 -5 -6 -5 -6
G 4 -4 -4 -2 -2 -3 -4 -5 -4 -4 -5 -6
G 5 -5 -5 -3 -3 -3 -4 -5 -4 -3 -4 -5
A 6 -6 -6 -4 -4 -4 -4 -3 -4 -4 -4 -3
T 7 -7 -7 -5 -5 -5 -5 -4 -4 -5 -3 -4
T 8 -8 -8 -6 -6 -6 -6 -5 -5 -5 -4 -4
A 9 -9 -9 -7 -7 -7 -7 -5 -6 -6 -5 -3
G 10 -10 -10 -8 -8 -8 -8 -6 -4 -5 -6 -4

j
Again, we can later reconstruct the actual alignment by considering, starting with

OPT [m][n], how each cell depends upon the cell for one of the subproblems, which
designates when we have aligned matches, aligned mismatches, or inserted gaps. The
highlighted path in this table shows one possible way to achieve the optimal score, cor-
responding to the following actual alignment:

aaT-ggA-tTAg

-cTcccAggTA-

