
Magic(sanitized).cpp

#include "Vector.h"

#include "Square.h"

void PuzzleSolve(Square& S, Vector<int>& V) {

 int remaining = V.size();

 if (remaining==0) {

 if (S.valid())

 cout << S << endl; // found a solution

 } else {

 /*

 * For each item of vector V, use that item to fill the chosen cell, and recurse

 */

 for (int rank = 0; rank<remaining; rank++) {

 if (S.add(V.elemAtRank(rank))) { // if we can add the given value to the square,

 Vector<int> newV(V); // create a copy of vector V

 newV.removeAtRank(rank); // but without the used item

 PuzzleSolve(S,newV); // recurse

 }

 S.pop(); // remove the previously added value

 }

 }

}

int main(int argc, const char* argv[]) {

 /*

 * The first command-line argument is used to specify n

 */

 /*

 * We create the initially empty square, and a list of values to

 * be used, from 1 to n^2.

 */

 Square S(n);

 Vector<int> L;

 for (int i=0; i<n*n; i++)

 L.insertAtRank(i,i+1);

 /*

 * Let the recursion begin...

 */

 PuzzleSolve(S,L);

}

Square(public sanitized).h

class Square {

 public:

 /*

 * Creates an nxn square.

 */

 Square(int width=3);

 /*

 * This is used to add a new value to an ’empty’ cell of the square.

 * Which empty cell is left as an implementation detail of the Square.

 *

 * The boolean return value is ’false’ if the newly added value is

 * known to cause a (partially) complete square which is guaranteed

 * to be invalid, no matter how the remaining squares are completed.

 */

 bool add(int value);

 /*

 * This removes the most recently added value from the square

 */

 void pop();

 /*

 * Return the width of the square

 */

 int width() const;

 /*

 * This accessor returns the (row,column) entry to value, where both

 * rows and columns are zero-indexed.

 *

 * Returns ’-1’ if the command fails (e.g., the indicies are invalid)

 */

 int get(int row, int column) const;

 /*

 * Checks validity of the current settings, ensuring that all rows,

 * columns and diagonals add up to the desired value. Furthermore,

 * it verifies that each number from [1, n^2] has been used once,

 * and only once.

 */

 bool valid();

 /*

 * Destructor

 */

 ˜Square();

};

Square(private sanitized).h

class Square {

 private:

 int n; // We are representing an (n x n) square

 int max; // with desired values from 1 to n^2

 int target; // and desired sum for each row of n*(n^2+1)/2

 int **entry; // two-dimensional array of entries

 int numFilled; // a count of the number of filled cells thus far

 bool *used; // this is used for validation

 /*

 * The first of the following five functions is able to generically

 * check the validity of a particular cross-section (e.g., row,

 * column, diagonal).

 *

 * For legibility, we introduce the other four forms of the check,

 * though each of those is mapped back to the generic form.

 */

 bool checkGeneric(int startRow, int startCol, int deltaRow, int deltaCol);

 bool checkRow(int row) { return checkGeneric(row,0,0,1); }

 bool checkCol(int col) { return checkGeneric(0,col,1,0); }

 bool checkDiag() { return checkGeneric(0,0,1,1); }

 bool checkRevDiag() { return checkGeneric(n-1,0,-1,1); }

 /*

 * Presuming that (row,col) was the most recently set entry, this

 * method attempts to determine whether that entry invalidates the

 * partial solution.

 *

 * If it becomes clear that this solution cannot be extended to a

 * valid solution, this method returns false. Otherwise it returns

 * true (Note that it still may be impossible to complete the

 * solution).

 */

 bool partialValidate(int row, int col);

 /*

 * Checks whether the current (partial) settings is in canonical form.

 * That is with top-left corner as the smallest of the corners, and

 * top-right corner as the smaller of its two adjacent corners.

 */

 bool canonical();

 /*

 * A representative of a cell, for convenience

 */

 struct Cell {

 int r;

 int c;

 };

 /*

 * In an nxn square, there are n^2 spots to fill in eventually.

 * Assuming that ’prevCount’ cells have already been filled, this

 * routine identifies where in the square the next insertion should be

 * placed.

 */

 Cell whichCell(int prevCount, int n);

};

