Keeping track of CPU time in C4++

There are several libraries that allow for the tracking of time from within a C++ program. For
today, we will rely on the following:

#include <time.h>

This library defines a new data type clock_t that is an integer-like value that represents a quantity
of clock ticks (similar to how size_t is a datatype for measuring the size of a container).

It then provides a function clock() that returns a clock_t instance describing the number of
clock ticks devoted to the execution of the current program. The number of clock ticks per second
depends upon the machine architecture; that value can be found using the defined CLOCKS_PER_SEC.

To measure the time used for a specific portion of your program, the typical approach used is to
record the starting time, then do the work, then record the stopping time, and then calculate the
difference between the start and stop times. For example

clock_t begin, end;

begin = clock(Q); // Go!
// Do something
end = clock(); // Stop!

double elapsed = (end - begin) / ((double) CLOCKS_PER_SEC); // measured in seconds

For today’s lab, our goal is to gather statistics about the efficiency of C++ vectors and lists,
hoping to see evidence of the amortized nature of vectors and the relative efficiency of lists. The
experiment setup should be to run a loop to insert N numbers into a container, recording the time
it takes for each individual insertion and then computing the overall maximum insertion time as
well as the overall average insertion time. Furthermore, we wish to vary the experiment along two
axes.

e Trying this with a vector and with a list.
e Performing the insertion at the front of the container or the back of the container.

Note that both the vector and list classes support the push_back method for adding a new
element at the end. While the 1ist supports push front as well, this is not supported by a vector
(for good reason, as we will see). A syntax that can be used for both the vector and the list for
inserting at the front is data.insert(data.begin(), item), assuming that data is the name of
the container.

The reverse of this page gives charts for you to fill out. We doubt you will get to complete all
of the charts, but do your best to gather enough evidence to draw a conclusion about the efficiency
of those behaviors.

Inserting at the back of a vector

Inserting at the front of a vector

N cumulative | average | worst N cumulative | average | worst
10,000 10,000
20,000 20,000
40,000 40,000
80,000 80,000
160,000 160,000
320,000 320,000
640,000 640,000
1,280,000 1,280,000
2,560,000 2,560,000
5,120,000 5,120,000
10,240,000 10,240,000
20,480,000 20,480,000
40,960,000 40,960,000
81,920,000 81,920,000
163,840,000 163,840,000
327,680,000 327,680,000

inserting at the back of a list inserting at the front of a list

N cumulative | average | worst N cumulative | average | worst
10,000 10,000
20,000 20,000
40,000 40,000
80,000 80,000
160,000 160,000
320,000 320,000
640,000 640,000
1,280,000 1,280,000
2,560,000 2,560,000
9,120,000 9,120,000
10,240,000 10,240,000
20,480,000 20,480,000
40,960,000 40,960,000
81,920,000 81,920,000
163,840,000 163,840,000
327,680,000 327,680,000

