
CSCI 314 – Fall 2012 Handout: asgn06
Algorithms
Michael H. Goldwasser
Saint Louis University Wednesday, 24 October 2012

Homework #6: Midterm Corrections
Due Date: Monday, 29 October 2012

Midterm Examination (Takehome Edition)

Name:

� In this homework, you are to complete all of the questions from our recent in-class
exam.

� The homework is due at Monday, 29 October 2012. You are not otherwise limited
to any specific time constraint for working on the homework (that is, you need not
limit yourself to 50 minutes).

� You must work entirely on your own for this entire homework.

� You may use the book and any notes, including your graded midterm exam. How-
ever, you may not use any online materials.

(For grading use only)

Problem Points Grade

1 12

2 12

3 24

4 24

5 16

6 12

Total 100



2 CSCI 314 – Fall 2012: Handout: asgn06

Problem #1 (12 points)

Give a formal proof that for any real constants a > 0 and b > 0,

(n + a)b is O(nb).

Specifically, show that there exists constants c > 0, n0 ≥ 0 such that (n + a)b ≤ c · nb for
all n ≥ n0.

Problem #2 (12 points)

Give tight asymptotic bounds for the following recurrences.
(You do not need to give any justification for a correct answer)

� T (n) = 4T (n/2) + n.

� T (n) = 4T (n/2) + n2.

� T (n) = 4T (n/2) + n3.



CSCI 314 – Fall 2012: Handout: asgn06 3

Problem #3 (24 points)

Computers will often have a small amount of fast, primary memory, along with a large
amount of slow, secondary storage, written on disk. For this reason, we can often predict
the performance of an algorithm simply by counting the number of page accesses which
take place to/from secondary storage.

We are interested in studying the efficiency of implementing a stack in such a model.
We assume that our stack is maintained in secondary storage, and that each page of
secondary storage will hold up to p items.

We consider two possible approaches. In the first approach, we are able to keep a
copy of one page of the stack in the fast memory. When performing an operation, if the
relevant stack page is already in our fast memory, then no page access from secondary
storage is required. If, however, the current stack operation requires access to a page
which is not currently in our fast memory, we will have to write the currently held page
back to the disk, and fetch the new page into fast memory.

(a)[6 points] If only Push operations are allowed, what is the worst-case number of page accesses
required for n such operations, expressed as a function of n and p? Briefly justify
your answer.

(b)[6 points] If both Push and Pop operations are allowed, what is the worst-case number of
page accesses required for n such stack operations, expressed as a function of n and
p? Briefly justify your answer.

Please note that this problem continues on the following page.



4 CSCI 314 – Fall 2012: Handout: asgn06

Our second approach is to store two pages of the stack in our fast memory. Again,
when performing a stack operation, if the relevant stack page is already in our fast
memory, than no page access from secondary storage is required. If, however, the current
stack operation requires access to a page which is not currently in our fast memory, we
will need to free up room in fast memory by writing one of the two pages back to the
disk. Of the two pages, we will choose to write that page which was least-recently used.
After writing that page to memory, we can read in the new page which is needed for the
current operation.

(c)[12 points] If both Push and Pop operations are allowed, what is the worst-case number of
page accesses required for n such stack operations, expressed as a function of n and
p? Justify your answer.



CSCI 314 – Fall 2012: Handout: asgn06 5

Problem #4 (24 points)

Consider the following problem. We are given as input,
• A collection X = {x1, x2, . . . , xn} of non-negative integers.
• An integer, T .

The goal is to find out whether or not there exists a subset of numbers from X which sums
exactly to T . As it happens, dynamic programming can be used to solve this problem.
Specifically, we can consider a set of subproblems, indexed by integers j and b, such that:

S(j, b) =

{

true if there exists a subset of {x1, . . . , xj} which sums exactly to b
false otherwise

The goal is then to compute S(n, T ).

(a)[12 points] Give a recursive formula which can be used to compute value S(j, b). Please make
sure you specify any necessary base case conditions.

(b)[12 points] � How many distinct subproblems will be considered during the overall compu-
tation?

� How long will it take to compute a single such subproblem using the recursive
formula you gave above?

� In what order could you compute those subproblems, if doing bottom-up dy-
namic programming.?

� What is the overall running time for solving the original problem?



6 CSCI 314 – Fall 2012: Handout: asgn06

Problem #5 (16 points)

Consider “Sample Graph 1” given on the last page of this exam.

(a) Draw the tree edges that result from a breadth-first search starting at vertex A.

(b) Draw the ordered, rooted tree(s) that results from a depth-first search, assuming
that the outer loop processes vertices in alphabetical order, and that vertex adja-
cencies are reported in standard alphabetical order.

You are only to draw the tree edges.

Furthermore, near each vertex v in your diagram, place a label designating discovery
and finishing times (v.d, v.f).



CSCI 314 – Fall 2012: Handout: asgn06 7

Problem #6 (12 points)

Consider “Sample Graph 2” given on the final page of the exam. Give two different
topological orderings of the vertices, which are consistent with this graph.



8 CSCI 314 – Fall 2012: Handout: asgn06

(you are welcome to tear this page loose, so long as no answers are written upon it)

Sample Graph 1

D

B

E

A

G

C

F

H

Sample Graph 2

B C D

E F G

A


