User’s Guide for autograde
(version 2.0)

Michael H. Goldwasser
mhg@cs.luc.edu

22 March 2002

Contents

1

2

Introduction
Overview of Process

Software Usage

3.1 Directory Hierarchy
3.2 The autograde.config File
3.3 Command Line Arguments .

Reports Generated

A Typical Grading Cycle
5.1 Standard Mode
5.2 Head-to-Head Mode

Impact on Assignment Design
6.1 Checking Correctness
6.2 Test Set Format
6.3 Test Set Size.
6.4 Sample Assignments

Technical Issues
7.1 Portability
7.2 Security

Download

Feedback

12
12
14
14
14

15
15
15

15

15

1 Introduction

autograde is a Perl script designed to automate the execution and testing of student pro-
grams, as part of the grading process. The script is not in any way intended to provide the
subjective evaluation which goes into the grading of student programming assignments. Nor
is it intended to give students instantaneous feedback on their program correctness. Rather,
it is a tool to automate the batch process of compiling, executing and evaluating correctness
of students’ programs. A battery of tests can be provided by the instructor or by the class
as a whole, as discussed in the paper ”A gimmick to integrate software testing throughout
the curriculum,” which appears in the Proceedings of the 33rd Annual SIGCSE Technical
Symposium on Computer Science Education, Feb. 27 — Mar. 3, 2002, pp. 271-275.

The tool’s flexible design was intended for maximal use with a variety of programming
assignments. The script is independent of the programming language used for assignments,
and an executable to be tested can be built from a single source code file submitted by a
student or from multiple source files provided by a combination of the student and instructor.
The current version of the script has been developed for a Unix/Linux operating system.
Our hope is that instructors will find it easy to retrofit most existing assignments for use
with this software. Further discussion on assignment design is given in Section 6.

2 Overview of Process

The script is designed to take source code submitted by students, compile that code, and to
run the executable on a sequence of tests. The tests can be specified in one of two ways:

e In the default mode, the sequence of tests is specified by the instructor. Each individual
test is described as a command-line statement to be executed in the default shell.

e In a special “head-to-head” mode, each student is expected to submit source code
as well as a test plan, specified as a text file with a predefined file format. In this
mode, each student’s executable is run on each student’s submitted test plan. For each
student, the following metrics are eventually reported:

— A student’s code is rated based on the percentage of submitted test files on which
it executed successfully.

— A student’s test file is rated by considering the number of submitted programs
with a demonstrated flaw on this test, versus the overall number of submitted
programs with a demonstrated flaw on at least one submitted test.

The “correctness” of a student’s program on a particular test is judged by a direct comparison
between the output of the student’s program and the output of a model implementation,
provided by the instructor. An outline of the life-cycle for a typical assignment is shown in
Figure 1. Issues related to the design of assignments are discussed in Section 6. Preparing
a configuration file and the initial directory hierarchy is discussed in Sections 3.1-3.2. The
portion which involves use of autograde can be thought of as a single batch process, though
Section 5 will discuss situations in which there is advantage in running the distinct stages
independently.

Before the assignment is given to the students:
e Assignment description is developed.
e If doing head-to-head competition, test file format must be declared.
e Optionally, instructor-provided components can be given to students,
to be linked with each student’s own source code.

Before the automated grading process begins:

e Source code must be developed which constitutes a “model” implementation.

e In some cases, additional software components, to be linked with student
submissions, are developed by the instructor to facilitate the automated grading.

e Students’ source code, and test files if doing head-to-head competition,
must be submitted into a separate subdirectory for each student.

e autograde.config file must be created for the assignment, specifying information
such as, compilation syntax, filenames, sequence of tests, etc. (see Section 3.2)

Distinct stages of grading with autograde:
e students’ tests gathered from submit directories, if head-to-head competition.
e model implementation must be executed to create answer key for each test.
e For each student:
o Copy submitted files to a working directory (if not already present).
o Compile the submitted files (perhaps linked with instructor’s files).
o For each test:
— Execute the program, saving output to a file.
— Compare the saved output to the model output,
saving differences to a file, if not a match.
o Generate summary file for this student.
o If head-to-head competition was performed, generate composite metrics.

Figure 1: Assignment Life-cycle

3 Software Usage

3.1 Directory Hierarchy

A separate directory for grading must be devoted to each assignment. This is the base
directory from which the autograde script must be executed. By default, the hierarchy
must contain the following at the onset:

e A subdirectory, submit, which contains further subdirecories for each student in the
class. Those subdirectories should contain all relevant files as originally submitted by
the student.

e A subdirectory, model, which contains a single subdirectory containing source code
which comprises a model implementation for the assignment.

e A file, autograde.config, as discussed in Section 3.2.

In addition, if the student programs are to be linked with any components provided by the
instructor, a subdirectory, ourfiles, should contain object code for those components.

Beyond these initial contents, the autograde script will create and make use of several
additional subdirectories as the process unfolds. First we will discuss the default setting,
where tests are provided by the instructor.

e answers — a subdirectory containing the answer key for each test. These files are
created by capturing the output of the model implementation on each such test.

e working — a subdirectory containing further subdirectories for each student, to be
used as the working directory for compiling and executing the students’ programs.
Initially, the source code submitted by the student is copied to this working directory
and combined with instructor-provided files. Then the source code is compiled, and
the tests are executed. An additional subdirectory, testing, will be created in each
working directory. For each test, the captured output will be saved as a file in the
testing subdirectory, as well as a summary of differences between the captured output
and the answer key for each test. Finally, inside each working directory, a report
providing a summary of the process for the student will be created, as discussed in
Section 4.

An important subtlety in the implementation for the working directories is that the student’s
source code is copied from the submit directory to the working directory when the working
directory is first created. Furthermore, the instructor might choose to edit this copy and
rerun autograde, while leaving the original version unchanged in the submit directory. The
advantage of this option is discussed more fully in Section 5.

When running in head-to-head mode, an additional subdirectory, competition, is created
to handle all facets of the competition. Within that subdirectory, the following are created:

e input — the test files submitted by the students are gathered from the original submit
directory and placed here.

e answers — this directory contains the answer keys for the student-provided tests (as
opposed to the answer keys for instructor provided tests).

e working — this directory serves a similar purpose as did the working directory in the
default mode, however it should be noted that the working directories for the head-to-
head competition are maintained separately from the original working directories.

e results — for each student, a succinct report is created summarizing the successes
and failures of that student’s code. This report is used at the end, to compile overall
metrics for the competition, and it is different from the more verbose report created
in the working directory.

3.2 The autograde.config File

For any given programming assignment, a configuration file must be created to customize
the process for the particular assignment. The file will be interpretted, using Perl syntax,
from within the execution of the autograde script. A sample of a configuration file is given
in Figure 2. Within the configuration file, any combination of the following variables can be
optionally defined:

e Regarding compilation: the compilation of student programs can be controlled as
follows. An individual compile command can be specified for each submitted source
file. After these individual commands have been executed, a final compile command
can be specified. The variables involved are:

— $sourcesuffix — any file with a name that ends with this string is considered to
be source code.

— $compile_file — this string specifies a single shell command which is to be ex-
ecuted once, for each file classified as source code above. All occurrences of the
substring FILE in the string will be replaced with the actually source code file-
name.

— $compile final — this string is a single shell command which will be executed
once, after the individual compile commands are completed.

Depending on the programming language being used, one or both of the compilation
techniques can be used. For example, if using C++ it may be necessary to compile
each source code into object code, followed by a final linking step. Alternatively, the
entire compile and linking can be delayed into a single step through $compile_final,
perhaps by use of a Makefile. Alternatively, if using Java, no linking is necessary and
so compiling each individual file is sufficient.

e Regarding instructor-provided files:

— Qour_files — this is an array of strings, designating the file names of any files
which are provided by the instructor but needed as part of execution. The speci-
fied files are assumed to be precompiled, and must exist in the ourfiles subdi-
rectory. A link is created to each such file, from within the working directory for
each student.

— Qexcluded_files — this is an array of strings, designating particular file names
which should be ignored if found in a student’s submit directory. Specifically,
if using instructor-provided files, it is probably useful to make sure that those
versions are used, as opposed to any related files submitted by the student.

e Regarding instructor-defined tests:

— Q@tests — this is an array of strings, where each string designates a single test as
a shell command to be executed from within a student’s working directory. This
command will be executed, with the resulting output saved to a file. That file
will then be compared to the answer key produced by the model implementation.

— @samples — this is an array of strings, using the same format as was used for
@tests. The difference in treatement is that samples are used to capture output
of a student execution for later examination, yet for which no direct comparison
to the model implementation need be made.

e Regarding students’ submitted tests: If head-to-head competition is used, the following
two variables must be properly defined.

— Q@HTHinput — this is used to detect which of a student’s submitted files is the one
to be interpretted as the test file for competition. The precise rule used is that
@HTHinput is an array of strings, and the test file is expected to have a file name
which contains one of those strings as a case-insensitive substring.

This rule was developed to handle the fact that if students are asked to submit a
test file named “inputfile” some will invariably submit files with names such as
“Inputfile,” “input file,” “inputfile.txt,” “myinput” and so on. If more than one
submitted file matches the rule, an arbitrary match might be selected.

— $HTHcommand — this string specifies a single shell command which is to be executed
in the working directory for each student, once for each test file in the competition.
All occurrences of the substring FILE in the string will be replaced with the
actually filename of a test input.

e Regarding generated report cosmetics: Section 4 discusses the reports generated by
the script. Several variables effect the creation and cosmetics of these reports, which
may be helpful if those reports will be given back to the student.

— $asgn_name — A string identifying the assignment

— Q@required_files — An array of strings declaring precise file names, each of which
was expected to be submitted as part of the assignment. For any name in this
array, but not submitted, an additional line will be added to the generated report
declaring this omission.

— Q@readme — An array of strings used to detect a single readme file, when one is
expected as part of the assignment. The syntax for this array is the same as
was used with @HTHinput. (again, to recognize variations such as “Readme.txt”
or “read_me”). If no match is found, an additional line will be added to the
generated report declaring this omission.

— $extracreditstart — This numeric variable specifies the index into the array
@tests at which point the tests begin relying on functionality which was deemed
as extra credit in the assignment. By default, the tests that were specified in array
Qtests are labeled as test1, test2, test3, etc. The effect of setting this variable is
to relabel the final portion of those tests as extral, extra2, etc. Please note that
the indicies start at 1, therefore if the array @tests contains 10 entries, and the
variable $extracreditstart is set to 7, then the tests will be labeled as,
testl, ..., testb, extral, ..., extra4.

$sourcesuffix = ".java";
$compile_file = "javac FILE";
$compile_final = "";

$asgn_name = "Prog 4 -- Hand";
@required_files = ("Hand.java");
@readme = ("read");

Qour_files = ("Card.class","CardsDriver.class","CardsGrader.class",
"List.class","ListImplementation.class","Position.class");

Q@excluded_files = ("Card.java","CardsDriver. java","CardsGrader.java",
"List.java","ListImplementation. java","Position. java");

../input/t1)",
../input/t2)",
../input/t3)",
../input/t4)",
../input/tBH)",
../input/t6)");

Q@tests = ("(java CardsGrader
"(java CardsGrader
"(java CardsGrader
"(java CardsGrader
"(java CardsGrader
"(java CardsGrader

$extracreditstart = 5;

I
SN

@HTHinput = ("input","test");
$HTHcommand = "(cat ../../../input/quit | java CardsGrader N FILE 100)";

Figure 2: Sample file autograde.config

3.3 Command Line Arguments

By default, the autograde script does nothing, if executed without any command-line argu-
ments. The following command line arguments are accepted:

e Choice of mode:

-H

By default, the script uses tests designated by the instructor in autograde.config.
If this flag is declared, then the script uses tests designated by the students through
the head-to-head competition mode. In this case, all work will be done within the
competition subdirectory.

Note: If the desire is to perform instructor’s tests as well as the competition,
autograde must be exectuted separately in each mode.

e Declaring subset of phases (as shown in Figure 1) to complete:
-g
This flag is only meaningful if in head-to-head mode. In that case, the script will
search students’ submit directories in an attempt to gather all of the test files.

-m
The script will compile the model implementation and then execute it on all
applicable tests, saving the output to form answer keys.

-p
The script will copy and compile each student’s source code in a working directory
(but will not execute any tests).

-e
The script will copy, compile and execute each student’s submission, for all of the
desired tests.

-8
This flag is only meaningful if in head-to-head mode. In that case, the script will
calculate the final competition metrics for each student based on the completed
tests. A report of these metrics is written to standard output.

-a
Do all relevant phases. If in standard mode, this is equivalent to the -m -e’ flags;
if in head-to-head mode, this is equivalent to the ’-g -m -e -s’ flags.

e Other effects on process:

-1 students

By default autograde processes all students found in the submit directory. If
a comma-separated list of students is declared in such an argument, only those
students will be processed by the script.

-t sec
By default, student program executions are timed out after 10 seconds. This
argument allows that default to be changed.

-r prob

When executing in competition mode, the default behavior is that each program
is run on each test. If a class is so large that the computation time becomes
restrictive, it is possible to rely on random sampling. If this parameter is specified,
each given program/test combination will be executed independently with the
specified probability.

-h

Displays usage information for script and list of accepted arguments.

-d

Runs script in debug mode. While processing, more information is sent to stan-
dard output then when running in the default mode.

-q
Runs script in quiet mode. While processing, less information is sent to standard
output then when running in the default mode.

e Modifying default hierarchy: the remaining arguments can be used to change the
default names used for the directory hierarchy.

-F config Configuration file (Default: ”autograde.config”)
-S dir directory of student submissions (Default: ”submit”)

-O dir directory containing ”our” files (Default: ”ourfiles”)
-M dir source for model solution program (Default: "model”)
-C dir competition subdirectory (Default: ”competition”)
-W dir original working directory (Default: ”working”)
-A dir directory containing model answers (Default: ”answers”)
-1 dir directory of test input files (Default: ”input”)
-R dir comma separated list of directories
with competition results (Default: "results”)

4 Reports Generated

For each student, with given userid, a report which summarizes the proccessing will be
created as working/userid/userid.autograde. The report contains a header, and then
contains additional information based on the particular steps of the grading process which
were attempted. Its format is intended to be helpful to the grader, and appropriate for
returning to the student. Information which may be included in this report is:

e When searching the submit directories, only top-level files are considered. If any sub-
directories exist, they are not checked, however a note is added to the report about
the existance of those subdirectories.

e If gathering test input files from student directories, a warning will be printed if no
such file was submitted.

e For any other “required” files which cannot be found, a warning will be printed.

e For each step of attempted compilation, a note will be placed either confirming success-
ful compilation, or else noting failure and including the output of the failed compilation.

e For each test which is exectuted, a line will be included in the report designating the
name, outcome, and length of time in seconds of each test. The outcome might be
labeled as “succeeded,” “failed,” “Timed Out,” or “completed” in the case of a sample
or the model.

When in head-to-head mode, two reports are created for each student. One report, ex-
actly as described above, is created as competition/working/userid/userid.autograde.
A second report is created and copied to competition/results/userid, and used later
for compling overall metrics for the head-to-head competition. This report contains only a
distilled summary of the test outcomes.

5 A Typical Grading Cycle

When run with the “-a” flag, the autograde script executes all phases of the grading process,
as shown in Figure 1, as a single batch process. In an ideal world, this may be all that is

needed. In practice, however, there are many situation in which distinct stages must be
run separately. We first discuss the standard mode, in which programs are submitted by
students, yet tests are provided by the instructor. Then we will discuss the head-to-head
competition mode.

5.1 Standard Mode

In this setting, the full process consists only of two phases, the creation of the model solutions,
and then the processing of the student submissions. That is, running

autograde -a
is equivalent to the combination

autograde -m
autograde -e

Since the tests and the model implementation are provided by the instructor, the answer keys
could be created with the “-m” flag, even before students submit their own implementations.
In reality it is almost always advisable to create and examine the answer keys before using
them as the basis for checking correctness of student implementations.

Once the answer keys exist, student implementations can be executed with the “-e” flag.
However, before taking the time to do all executions, it is often informative to simply test
whether required files were indeed submitted, and if so, whether they compile successfully.
Running the script with the “-p” flag will cause it to copy and compile (but not execute)
submitted files, creating a report which summarizes any problems.

When ready to execute all the tests, running with the “-e” flag by default processes
all students. The “-1” flag can be used to select a subset of the students, specified as a
comma-separated list of userids, for example as

143

autograde -e -1 alice,bob

The main advantage offered by this option is the ability to process late submissions received
after the initial grading, or to reprocess implementations after the instructor has modified
the original source code. Whether or not to modify a student’s code is up to the instructor’s
discretion, but there are some situation in which it seems appropriate or useful.

e As an extreme example, there are cases in which a student finally gets the program
working, adds some comments just before submitting, and ends up submitting source
code which causes a compilation error. Whether or not a grader chooses to penalize
such a student, it is probably worthwhile to fix the compilation error and see how the
modified code executes on the tests.

e There are cases where a student’s “correct” implementation will fail the automated
tests because the correctness is judged by comparing the standard output of the pro-
gram versus a model implementation. The assignment design can try to minimize
the likelihood of such cases (see Section 6), but individual cases may slip through the
cracks. For example, a student implementation may include debugging output which
should have been removed before submission, yet remains. This spurious output would
cause the implementation to fail the tests en masse.

10

e Finally, after doing an initial evaluaton of the correctness of students’ original code, it is
common, as a grader, to debug the code and suggest changes which would improve the
implementation. After recording the original performance report, modifications can be
made to the student’s code, and then the debugged code can be retested for correctness.
This often allow’s the grader to determine whether an obvious and correctable mistake
was the sole mistake, or whether further problems exist.

In order to support such modifications, the software uses the following rule. A student’s
submitted source code is assumed to be in a submit directory. That code is originally copied
by the script into a separate working directory at which point it is compiled and executed.
The instructor is free to edit the version of the code in the working directory, while leaving
the original version in the submit directory. In this case, further applications of the script
will recompile the version as it appears in the working directory.

5.2 Head-to-Head Mode

When administering a head-to-head competition, even more issues arise. In this setting,
running

autograde -H -a
is equivalent to the combination

autograde -H -g
autograde -H -m
autograde -H -e
autograde -H -s

Given that the lion’s share of time is spent during the all-pairs execution of the student
programs, it makes great sense to validate the success of the two earlier phases before be-
ginning those executions. When gathering student tests, two possible pitfalls exist. First, a
student might submit a test, but using an unrecognized filename. Secondly, a student might
submit a test which for one reason or another, is not parsed properly. In either of these
cases, the student is likely to receive a score of zero for the testing portion of the compeition,
though this may seem unfair to the student. Human intervention can generally be used at
this early stage to avert such problems, though it is up to the grader as to whether or not
to spend the time to intervene.

Once the input’s are gathered, then the model answers can be constructed, and the heart
of the student competition can begin. As in the previous section, there are cases where it
may be appropriate for a grader to modify a student’s source code before running all of the
tests, though in a competition such editing would probably be more restrictive. It should
be noted that the 'working’ directory within the competition subdirectory is independent of
the 'working’ directory that was used when run in standard mode. That is, the version of
the code in the 'competition/working’ directory is originally created as a copy of the original
submit directory version, and the grader can choose to edit this copy with discretion.

The situation which is signficantly more complicated in head-to-head mode, is that of
processing a late submission. In standard mode, the grading of one student’s submission was

11

uneffected by other students’ submissions, and thus the -1’ flag could be used to individually
process late submissions. In head-to-head mode, processing a late submission involves not
only running the implementation on many other tests, but it involves a newly submitted
test which must be used on all previously submitted implementations. For demonstration,
we consider processing two late submissions from ’alice’ and ’bob’ after the remainder of the
grading has been completed. In this case, the following should be done:

autograde -H -e -1 alice,bob

autograde -H —-g -I lateinput -1 alice,bob
autograde -H —m -I lateinput

autograde -H -e -I lateinput -R lateresults
autograde -H -s -R results,lateresults

The first line has the effect of executing alice and bob’s implementations on all previously
submitted tests. The remaining four lines administer testing of all implementations on the
two newly submitted tests. When processing student implementations, all tests which are
found in the input directory are used. Therefore, the only way to run implementations on
two distinct tests is to create a second input directory containing only those tests. Therefore,
the second line above gathers the two new inputs, but places them in a new directory titled
'lateinput’ in this example. The third line creates model solutions for those two tests, while
the fourth line executes all implementations (including alice and bob’s) on the two new
tests. However, it is important to preserve the result summaries of the many previously
executed tests, and therefore the fourth line declares that result files for these tests be
placed into a separate directory, titled 'lateresults’ in this example. After the first four lines
have been executed, all possible implementation/test pairs have been executed, however the
result summaries are broken across two directories, 'results’ and 'lateresults’ in this example.
Therefore, when compiling the final statistics for the overall competition, it is important to
specify that results be combined from both of those directories.

6 Impact on Assignment Design

autograde was created with a goal of being amenable with as many existing programming
assignments as possible. In this section, we discuss the flexibility of the tool and its impact
on the design of assignments.

6.1 Checking Correctness

The most important issue in assignment design is ensuring that correctness checking can be
automated. Assignments must therefore be formally specified so that the notion of “correct”
behavior is unambiguous. In its simplest form, the correctness of a student implementation
on a given test can be verified by comparing its captured output directly to the output of a
model implementation. At face value, such a direct comparison would be sufficient in some
settings. Yet there are many settings in which looking for an exact match is tenuous if not
completely inappropriate.

12

e For any assignment, finding a perfect match between a student’s generated output
and a model solution requires very explicit guidelines from the instructor and great
discipline on the part of the student. It may work, but it is likely that if a student
makes a mistake in the formatting of the output, that student’s implementation will
indiscriminately fail all tests.

e For some assignments, the notion of correctness is well-defined yet not unique. For
example, one of the assignments distributed with this package involves an aspect of a
game of cards. At times, the rules allow for more than one legal play. In such a setting,
relying on an exact match between the behavior of a student implementation and that
of a model implementation is not a legitimate technique for verifying correctness.

e Some assignments involve students writing components which do not directly produce
any textual output. For example, the student’s code may be responsible for the creation
or maintenance of an internal data structure.

In order to best address the above situations, the design of autograde incorporates
the two following techniques. First, students’ submitted source code can be linked with
additional components provided by the instructor to produce executables with a varied
behavior. Secondly, rather than directly capturing the output of the program execution,
autograde captures the standard output produced by a more general shell command, as
defined within autograde.config. In cases where a direct match of a program’s output
suffices, this shell command may simply initiate the program execution. But in other cases
this design allows the output of the students’ executable to be post-processed when piped
to standard system tools (e.g., grep, awk) or even custom-design tools. Generally, the
combination of one or both of these techniques can be used to develop fully automated
correctness checking.

e To avoid the pitfall of student generated output which does not precisely conform to
guidelines, output can be generated indirectly through the use of components provided
by the instructor. Alternatively, it may be reasonable to compare the students’ original
output to that of a model solution, so long as system tools are used to pattern match
portions of the output, rather than relying on an exact match.

e For assignments in which the notion of correct behavior is not unique, checking can be
effective using either of these techniques. For example, the correctness can be check in
real-time by linking in an instructor’s compoenent which observes the behavior of the
student program, raising a red-flag when a behavior flaw is detected. Alternatively, the
non-trivial correctness checking can be implemented through a post-process analysis
of the original execution output.

e For assignments in which no classical output is generated, non-trivial components can
be linked in to verify correctness. For example, a checker can compare an internal
data structure produced by a student to a reference structure built by the checker.
Meaningful output can be produced in the case of a mismatch.

13

6.2 Test Set Format

In spirit, test sets could be specified either implicitly through software components which
interact with student submission while performing a battery of tests, or explicitly as a file
using a defined format. When testing is to be specified by the instructor, autorade can be
configured to use either of these means through the @tests parameter in autograde.config.

For a head-to-head competition, students must submit their tests as a text file which
strictly adheres to a file format defined by the instructor in the assignment guidelines. The
script will search for this input file in the students submit directory, and the file will be
passed to other students’ executables either redirected as standard input or through the use
of a command-line argument. This choice is left to the configuration of autograde, through
the $HTHcommand parameter of autograde.config.

It is imperative that students rigorously follow the prescribed standards. Potential pitfalls
for a student include submitting test input that is essentially ignored for not adhering to
the standards, as well as submitting an implementation that does not properly parse the
standard input format. In either such case, the student risks failing the competition en
masse. In fact, there is a compound risk that the student will submit a flawed input format
that is self-consistent with a flawed parser. Unless the intent of an assignment is specifically
geared towards a student’s ability to parse or error-check input, the overwhelming conclusion
is that the instructor should provide all students with a robust front-end parser so as to avoid
most such tragedies.

Admittedly, a traditional text-based “console” interface may indeed be unappealing to
modern students. We wish to point out that in a modular setting, the instructor can provide
both a textual interface as well as a separate graphical user interface. Students could use the
GUI for most of their development if they wish, but would eventually need to use the textual
driver for developing their test file. As a side effect, it is advantageous for the student to
see both such interfaces. Even though the GUI might seem attractive for the end user, the
textual interface is quite valuable during a debugging phase on large tests. It is quite time
consuming to repeatedly step through the first 40 mouse-clicks to reach the bug on the 41°¢,
yet easy if such a chain of commands can be read from a file.

6.3 Test Set Size

As the head-to-head competition is structured, a student receives credit if her test set exposes
one or more flaws in another student’s implementation. Thus students will gain an advantage
by developing larger and larger tests. For this reason, a strict limit should be placed on the
inherent size of the tests. The form of this limit will depends on the particular assignment
and its enforcement can be enacted through a front-end driver or preprocessing.

6.4 Sample Assignments

In order to demonstrate some of these issues, the distribution package includes two sample
assignments, complete with all relevant files.

14

7 Technical Issues

7.1 Portability

This script has been designed and tested using Perl5 under both Solaris and Linux. We have
not made any attempt to port this to a Windows environment, though perhaps it is possible.
We invite comment on any user’s experience in regard to porting.

The most technical issue, in regard to portability, is the ability to execute student pro-
grams while setting an alarm as a timeout, and subsequently killing any child processes upon
timeout. As much as possible, we have used existing Perl commands hoping to rely on its
portability. However, we have relied on standard system calls (cp, pwd, date, diff, ps) in
places. Additionally, we rely on the ability to redirect or capture the standard output and
standard error.

7.2 Security

No effort has been made to safeguard against malicious students. During the execution of
this script, a student’s program will be executed as a process using the effective user 1D of
the grader. This presents a huge security whole in terms of the file system and machine on
which grading is done, as the student’s programs might interact with the operating system.
There are many common techniques to safeguard against such problems; they simply
have not been implemented in the current version of autograde. Possible safeguards include
running student programs with the root directory remapped to the working directory, and
creating a separate userid with limited system permissions, for the purpose of grading.

8 Download

The software, as well as a demonstration of its use through several sample programming
assignments, can be found at http://www.cs.luc.edu/ "mhg/autograde.

9 Feedback

Please feel free to contact the author via email to discuss any experiences you have, either
positive or negative. If reporting a bug, please give specific information about your system
and include additional files, if relevant. If further updates are made to the software or the
documentation, it will be distributed through the website referenced in Section 8.

15

