
comp150 – Spring 2003 Handout: Exam3-Info
Introduction to Computer Science

Michael Goldwasser

Loyola University Chicago Tuesday, 22 April 2003

Exam 3 Information

• The final exam for this course will be on Thursday, 1 May 2003, from
2:30–4:30pm.

• This exam is closed book and no calculating devices of any type will be
allowed. However the following aides are allowed:

– Included with this packet is a copy of the relevant “help” files associ-
ated with the Super Simple CPU and Palgo commands. You will be
allowed to bring these prepared notes into the exam with you.

– In addition to the notes provided by us, you may add your own per-
sonal notes onto both the front and back of this one sheet of paper,
for use during the exam. When the exam is over, staple this sheet to
the rest of your exam.

• The format of the midterm will be as follows. There will be 14 questions
available on the exam. Each student must choose to solve exactly 12 of
the 14 questions. Students are free to read all of the questions, and make
attempts, before deciding which 12 to select. However the student must
explicitly mark which 12 problems are to be graded (if this is not clear, we
will assume that the first 12 problems are to be graded).

• The potential coverage of material will be as follows. Approximately 50%
of the questions will cover “new” material, that is topics which were intro-
duced since the last exam. Specifically, it will included coverage of lectures
from Thursday, 20 Mar 2003 through Thursday, 29 Apr 2003, as well as the
associated readings and homeworks for those topics (please see the class
schedule for exact coverage).

The remainder of the exam will be cumulative, revisiting major topics from
the first two-thirds of the course.

• As a sample, we will provide you with the second midterm which was used
last semester in this course, as well as with the solutions to that exam.
Keep in mind that the exact coverage of topics varies from semester to
semester, so this sample is meant mostly as an example of the style of the
questions, as opposed to the precise content of the questions.

 MORE ABOUT THE SUPER SIMPLE CPU INSTRUCTIONS
==
1111 STP −− this stops the computer, no more fetch/decode/execute
 cycles until you reset.
˜˜
0001 ADD −− fetch a number from memory and add it to the
 contents of the accumulator, replacing the value
 value in the accumulator.

 E.g. 0001 000000001111 −− get the value at memory location 15
 and add that to accumulator.
˜˜
0010 SUB −− just like ADD, only subtract.
˜˜
0011 LOD −− fetch a number from memory and store it into
 the accumulator, replacing its old value.

 E.g. 0011 000000001111 −− get the value at memory location 15
 and store that value into the accumulator.
˜˜
0100 LDI −− load immediate; the value to be put into the
 accumulator is the rightmost 12 bits of the
 instruction; do not go to memory like LOD

 E.g. 0100 000000001111 −− store the value 15 into the
 accumulator.
˜˜
0101 STO −− store the accumulator’s value into memory at the
 indicated location.

 E.g. 0101 000000001111 −− store the accumulator’s value
 into memory location 15.
˜˜
0110 INP −− ask the user for one number and store that into
 the accumulator.
˜˜
0111 OUT −− copy the value in the accumulator to the output
 area.
˜˜
1000 JMP −− jump to the instruction at the indicated memory
 address.

 E.g. 1000 000000001111 −− put the value 15 into the PC
 which will cause the next instruction to
 be taken from location 15 of memory.
˜˜
1001 JNG −− jump to the instruction at the indicated memory
 location if the accumulator’s value is negative;
 otherwise just add 1 to the PC.

 E.g. 1001 000000001111 −− put the value 15 into the PC
 if accumulator < 0, otherwise go to the
 next instruction.
˜˜
1010 JZR −− jump to the instruction at the indicated memory
 location if the accumulator’s value is zero;
 otherwise just add 1 to the PC.

 E.g. 1010 000000001111 −− put the value 15 into the PC
 if accumulator = 0, otherwise go to the
 next instruction.
˜˜

PALGO COMMANDS YOU CAN USE...(examples)
 var = expression (assign an expression’s value to a variable)
 var = input() (input a string)
 var = input_number() (input a number)
 print(expression)
 pen("down")
 pen("up")
 color("red")
 color(158,207,96)
 goto(5,6)
 down(8)
 up(8)
 left(8)
 right(8)
 draw()
 draw(5,6)
 wait(500)
 numcells(40)
 clear()

STRUCTURES YOU CAN USE...
 repeat 20 times
 ...
 end

 while i < 10
 ...
 end

 if n < 5 then
 ...
 end

 if n < 5 then
 ...
 else
 ...
 end

 for i = 0 to 10
 ...
 end

 define square (n)
 ...
 end

