
comp363 Handout #4
Design and Analysis of Computer Algorithms
Michael Goldwasser
Loyola University Chicago Tuesday, 28 January 2003

Homework #2: Recurrences, Amortization, Comparison Based Bounds
Due Date: Tuesday, 11 February 2003

Guidelines

Please make sure you adhere to the policies on collaboration and academic hon-
esty as outlined in Handout #1.

Reading

Review Ch. 4 and read Ch. 8.1, 9, and 17 of CLRS.

Practice

These exercises are purely for your own practice. You should not turn them in,
and you are free to discuss them fully with others.

• Do CLRS 4.2-4, 4.2-5
• Do CLRS 4.3-1
• Do CLRS 17.1-2
• Do CLRS 17.1-3 and 17.2-2 and 17.3-2
• Do CLRS 17.2-3
• Do CLRS 17.4-3

Problems

Problem A (20 points) “Work entirely on your own.”
Give asymptotic upper and lower bounds for T (n) in each of the following
recurrences. Assume that T (n) is constant for n ≤ 2. Make your bounds
as tight as possible, and prove your answers.

For some of these, you may use the Master Theorem as a proof so long as
you justify that it applies. For others, you should prove your bounds by
induction, using the substitution method.

i. T (n) = 2T (n/2) + n3.

ii. T (n) = T (9n/10) + n.

comp363: Handout #4 2

iii. T (n) = 16T (n/4) + n2.

iv. T (n) = 7T (n/3) + n2.

v. T (n) = 7T (n/2) + n2.

vi. T (n) = 2T (n/4) +
√
n.

vii. T (n) = T (n− 1) + n.
viii. T (n) = T (

√
n) + 1.

Problem B (40 points) “You may discuss ideas with other students.”
Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by adding to each node
x the field size[x] giving the number of keys stored in the subtree rooted
at x. Let α be a constant in the range 1/2 ≤ α < 1. We say that a given
node x is α-balanced if

size[left[x]] ≤ α · size[x]
and

size[right[x]] ≤ α · size[x].
The tree as a whole is α-balanced if every node in the tree is α-balanced.
The following amortized approach to maintaining weight-balanced trees
was suggested by G. Varghese.

i. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given
a node x in an arbitrary binary search tree, show how to rebuild the
subtree rooted at x so that it becomes 1/2-balanced. Your algorithm
should run in time Θ(size[x]), and it can use O(size[x]) auxiliary
storage.

ii. Show that performing a search in an n-node α-balanced binary search
tree takes O(lgn) worst-case time.

For the remainder of this problem, assume that the constant α is strictly
greater than 1/2. Suppose that Insert and Delete are implemented as
usual for an n-node binary search tree, except that after every such op-
eration, if any node in the tree is no longer α-balanced, then the subtree
rotted at the highest such node in the tree is “rebuilt” so that it becomes
1/2-balanced.

We shall analyze this rebuilding scheme using the potential method. For
a node x in a binary search tree T , we define

∆(x) = |size[left[x]]− size[right[x]]|,

comp363: Handout #4 3

and we define the potential of T as

Φ(T) = c
∑

x∈T :∆(x)≥2

∆(x),

where c is a sufficiently large constant that depends on α.

iii. Argue that any binary search tree has nonnegative potential and that
a 1/2-balanced tree has potential 0.

iv. Suppose that m units of potential can pay for rebuilding an m-node
subtree. How large must c be in terms of α in order for it to take
O(1) amortized time to rebuild a subtree that is not α-balanced?

v. Show that inserting a node into or deleting a node from an n-node
α-balanced tree costs O(lgn) amortized time.

Problem C (20 points) “You may discuss ideas with other students.”
Assume that we are interested in a data structure which supports two
operations: Search and Insert. If we store the items in an unordered
array, then Insert can be done in O(1) time but Search would require
Ω(n) time, where n is the current number of items.

Alternatively, if we keep the array sorted, then we can use binary search

to implement Search in O(lg n) time (if you are not familiar already with
binary search, please consult one of the recommended readings or see a
brief discussion in Exercise 2.3-5 of CLRS). Unfortunately, if we insist on
keeping the array sorted, Insert will require Ω(n) time in the worst case,
as we may have to shift many items around.

In this problem, we are going to develop a way to accomplish these tasks
while better balancing the time required for Search and Insert. Specif-
ically, suppose that we wish to support Search and Insert on a set of n
elements. Let k = dlg(n + 1)e, and let the binary representation of n be
〈nk−1, nk−2, . . . , n0〉. We can keep k sorted arrays A0, A1, . . . , Ak−1, where
for i = 0, 1, . . . , k − 1, the length of array Ai is 2

i. Each array is either
full or empty, depending on whether ni = 1 or ni = 0, respectively. The
total number of elements held in all k arrays is therefore

∑

k−1
i=0 ni2

i = n.
Although each individual array is sorted, there is no particular relationship
between elements in different arrays.

i. Describe how to perform the Search operation for this data structure
in O(lg2 n) worst-case time. (justify the bound on the running time)

ii. Describe how to perform the Insert operation for this data struc-
ture in O(lgn) amortized time. (justify the amortized bound on the
running time).

comp363: Handout #4 4

Problem D (20 points) “You may discuss ideas with other students.”

Let X[1..n] and Y [1..n] be two arrays, each containing n numbers already
in sorted order. Give an O(lgn)-time algorithm to find the median of all
2n elements in arrays X and Y . (Hint: If X[k] is the median of array
X, how quickly can you determine whether it is also the median of the
combined 2n elements? If it is not, did you learn any new information
about the identity of the true median?)

Problem E (EXTRA CREDIT – 10 points)
“You may discuss ideas with other students.”

Consider what happens if we wish to include a Delete operation in the
data structure developed in Problem C. (we will assume that the parameter
to Delete is a reference to the exact location in the structure which holds
the item to be deleted – that is we will not need to perform a search to
find the item being deleted.)

i. Argue that if we insist on using a structure where all of the arrays are
either empty or full, there will always be a sequence of t operations,
for any t, which require Ω(tn) time, and thus Ω(n) amortized time.

ii. If we allow you to relax the restriction that all arrays are either full or
empty, show how to implementDelete in O(1) amortized time, while
still maintaining the previous time bounds for Search and Insert.
Make sure that you justify not only the analysis of Delete, but also
that you re-justify the previous bounds for the other operations on
the new technique for the data structure.

