
comp363 Handout #11
Design and Analysis of Computer Algorithms
Michael Goldwasser
Loyola University Chicago Tuesday, 11 March 2003

Homework #4: Priority Queues, Disjoint Sets
Due Date: Tuesday, 25 March 2003

Guidelines

Please make sure you adhere to the policies on collaboration and academic hon-
esty as outlined in Handout #1.

Reading

Read Ch. 19, 20, 21 of CLRS.

Problems

Problem A (25 points) “You may discuss ideas with other students.”
We have already seen several algorithms for finding a minimum spanning
tree of an undirected graph. The following pseudocode outlines yet another
such algorithm. It maintains a partition {Vi} of the vertices of V and, with
each set Vi, a set

Ei ⊆ {(u, v) : u ∈ Vi or v ∈ Vi}

of edges incident on vertices in Vi.

MST(G)
1 T ← ∅
2 for each vertex vi ∈ V [G]
3 do Vi ← {vi}
4 Ei ← {(vi, v) ∈ E[G]}
5 while there is more than one set Vi

6 do choose any set Vi

7 extract the minimum-weight edge (u, v) from Ei

8 assume without loss of generality that u ∈ Vi and v ∈ Vj

9 if i 6= j

10 then T ← T ∪ {(u, v)}
11 Vi ← Vi ∪ Vj , destroying Vj

12 Ei ← Ei ∪ Ej



comp363: Handout #11 2

The correctness of the algorithm can be proven using techniques from
Section 23.1. (you do NOT have to prove the correctness yourself).

The task for you is to show how the mergable-heap and disjoint-set data
structures can be used to implement this algorithm. The first pages of
Chapter 19 and Chapter 21 define, respectively, a set of mergable-heap
and disjoint-set operations. Those data structures are implemented in the
remainder of those chapters and you can assume their correctness and
stated efficiency.

i. Describe how the mergable-heap and disjoint-set data structures can
be used to maintain the various sets in this MST algorithm. You may
use additional elementary data structures as needed.

Be very specific about which lines in the above pseudocode correspond
to which specific mergable heap or disjoint-set operations, as well as
the parameters used for each such operation.

ii. Give the overall running time of the above MST algorithm, assuming
that the mergable heaps are implemented as binomial heaps, and the
disjoint sets use path-compression and union-by-rank.

Problem B (10 points) “Work entirely on your own.”
Do Exercise 19.2-2 on page 472 of the text.

Note: During the execution of Binomial-Heap-Union, it may be that the
working list contains three consecutive trees of equal degree. The final
outcome depends on which two of the three trees you link in this situation.
We will gladly accept any such outcome; you need not worry about making
sure that you choose the identical two trees as the specific code in the text.

Problem C (15 points) “Work entirely on your own.”
Do Exercise 19.2-3 on page 472 of the text.

Note: Similar comments as with Problem B

Problem D (10 points) “Work entirely on your own.”
Do Exercise 20.2-1 on page 488 of the text.

Note: There is again some non-determinism throughout the operations,
which depends on the exact order of the circular lists. We will accept any
valid outcome, so long as it could result from the correct execution of the
operation in question.



comp363: Handout #11 3

Problem E (15 points) “You may discuss ideas with other students.”
Show that for any positive integer n, there exists a sequence of Fibonacci-
heap operations that creates a Fibonacci heap consisting of just one tree
that is a linear chain of n nodes.

Note: Make sure that you prove this fact (inductively) for all values of n.

Problem F (25 points) “You may discuss ideas with other students.”
Recall that Prim’s MST algorithm, when run using Fibonacci heaps as
the underlying priority queue implementation, runs in worst-case time of
O(E + V lg V ).

Suppose edge weights in a graph are integers in the range from 1 to W .
Develop a new priority queue implementation for this situation which re-
sults in a worst-case bound of O(E +WV ) time if used as the underlying
priority queue for Prim’s algorithm.

(Hint: To get going, think about what you could do if W = 1. What if
W = 2? What if W = 3?)

Problem G (EXTRA CREDIT – 10 points)
“You may discuss ideas with other students.”

Show that any sequence of m Make-Set, Find-Set, and Union operation,
where all the Union operations appear before any of the Find-Set opera-
tions, takes only O(m) time if both path compression and union by rank
are used. What happens in the same situation if only the path-compression
heuristic is used?


