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Exploration of Number Systems

Part 1: Number Systems

While our current programming lesson involves error checking, we begin this exploration
by sneaking in a valuable math lesson for computer scientists, namely about number
systems used for representing integers.

Humans are used to the decimal (“base ten”) number system in which each
character digit represents a multiple of some power of ten (presumably because we have
ten fingers). For example, we use the representation 2019 for the quantity we might
otherwise describe as two-thousand and nineteen. More formally, in the decimal system,
the rightmost digit is the “ones digit” and so the numeral “9” in that place represents
the quantity nine. To its left is the “tens digit” and the numeral given there represents
an appropriate multiple of ten (in this case 1 × 10 = 10). To the left of that is the
hundreds digit (as 102 = 100), although in our example above, the digit “0” represents
a contribution of zero hundreds, and the leftmost digit of this example is a “2” that
represents 2 × 103 = 2000. Returning to the context of Python and programmer, we
have already seen that the int class constructor can assist us in converting strings of
characters to the underlying integer values, for example with int('2019') returning the
actual value we know as 2019.

In computer science, there are a lot of two-state systems (e.g. true/false, on/off) and
so there is a great interest in the binary (“base two”) system in which the places are
powers of two. The rightmost digit again represents ones, but the digit immediate to its
left represents twos, the next represents fours, then eights, then sixteens, and so forth.
In a binary system, each individual digit is either a “0” or a “1”; as with the decimal
system, if we need to increase a digit beyond that we can instead “carry” to the next
higher power of two. So in a binary system, the string “10011” represents the quantity
known as nineteen in our decimal system as it could be viewed as 1 × 24 + 0 × 23 + 0 ×
22 + 1 × 21 + 1 × 20 = 16 + 2 + 1 = 19.

1. What is the decimal value of the binary number 110100?

2. How would the decimal value 41 be represented in binary?
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Computer scientists also tend to be interested in other bases that are powers of two,
most typically octal (“base eight”) and hexadecimal (“base sixteen”), for reasons we will
explain in a moment. Starting with octal, we note that the place values are powers of
eight with the rightmost being 80 = 1, the second from the right being 81 = 8, the next
being 82 = 64. Then each digit can be any value from 0 through 7. As an example, the
octal value 314 would actually be equal the the value familiar to us as 204 in decimal (i.e.,
two-hundred and four). To see this, we note that 3 ·82+1 ·81+4 ·80 = 3 ·64+1 ·8+4 ·1 =
192 + 8 + 4 = 204.

3. What is the decimal value of the octal number 246?

4. How would the decimal value 53 be represented in octal?

Why computer scientists have an affinity to a system like octal is because eight is a
power of two and that makes it very convenient to convert between binary and octal (in
fact, far easier that to convert either of those to or from decimal). For larger numbers,
it is quite difficult for us humans to effectively remember, transcribe, or communicate
long binary values such as 1011101101011; there are simply a lot of ones and zeros. Try
memorizing that, or even reading it to a friend and letting them write it down. However,
a binary value can easily be converted to octal by considering groups of three binary digits
(bits) starting at the rightmost. Every three bits corresponds to a single octal digit (as
three bits can represent any number from 0 to 7). So the value 1101001100011 can be
though of in three-bit chunks as 1 101 001 100 011 (note well we started grouping at
the right side not the left). In octal, that same number is represented as 15143, and
perhaps that’s a bit easier for us to memorize or transcribe.

5. Convert the following binary value to octal: 1111101010110100

6. Convert the following octal value to binary: 4725
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Part 2: Python conversions

We noted earlier that Python’s int( ) constructor will compute the numeric represen-
tation for a given string of (character) digits. By default, it does assume a decimal rep-
resentation, and thus int('314') does produce the integer we describe as three-hundred
and fourteen. However, that constructor accepts a second (optional) parameter which
is an integer that defines the base of the number system. For example, the expression
int('314',8) produces the octal interpretation of that value, which as we discussed earlier
is the decimal 204. Similarly, the Python expression int('10011',2) produces the integer
value nineteen.

Of course, the integer constructor also has to cope with what happens if invalid
parameters are sent to it.

7. What happens if calling int('FAB4')? Why?

8. What happens if calling int('391', 2)? Why?

9. What happens if calling int('391', 8)? Why?

Part 3: Our implementation

While this functionality of converting numbers is already supported by Python’s int
constructor, let’s develop our own implementation. To avoid confusion, we’ll name ours
toDecimal an assume a signature such as toDecimal(s, base) where s should be a character
string representing the digits and base should be an integer that for the sake of this context
should be at least 2 and at most 10.

We want your focus to be on the interesting combination of expectations and how
to validate the parameters and raise appropriate expectations when the expectations are
not met. The actual math of the conversion is also interesting, but we’ll provide you
with a working implementation (that is, so long as the user sends valid parameters).

def toDecimal(s, base):
total = 0
for k,digit in enumerate(s):

total += int(digit) ∗ base∗∗(len(s)−1−k)
return total
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Experiment with our implementation of the function, paying particular attention to
what happens when unexpected parameters are sent.

10. What happens if calling toDecimal(314, 8)? Explain your observations.

11. What happens if calling toDecimal('314', '8')? Explain your observations.

12. What happens if calling toDecimal(8, '314')? Explain your observations.

13. What happens if calling toDecimal('314', 2)? Explain your observations.

14. What happens if calling toDecimal('314', −2)? Explain your observations.

15. What happens if calling toDecimal('314', 16)? Explain your observations.

16. What happens if calling toDecimal('FAB4', 16)? Explain your observations.

17. After reflecting on the above scenarios, give an enumerated list of specific expec-
tations about parameters s and base and their relation to each other. (Feel free to
add more items to the list as you see fit.)

•

•

•

•

•
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18. When validating parameters, the order in which you validate your expectations is
quite important. What is wrong with an implementation that begins as follows?

def toDecimal(s, base):
if base < 2 or base > 10:

raise ValueError('invalid base')
...

19. Return to the list of conditions you developed on the previous page and list those
again, this time in an appropriate order in which the validations should be per-
formed.

•

•

•

•

•

•

•

20. Revise our original implementation to perform robust validation of all parameters.
Test your new implementation on all the test cases given on page 4.
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Part 4: Hexadecimal (Bonus time)

We originally mentioned that computer scientists sometimes work with bases that
are powers of two such as octal (base 8) and hexadecimal (base 16), because conversion
between binary and these powers is trivially done by converting groups of bits. Computer
systems often have hardware that physically process bits in groups of 16 bits, 32 bits,
64-bits, or even 128 or 256 bits at a time. Although octal is convenient, because an octal
digit corresponds to three binary digits, a 16-bit binary value needs more than five octal
digits but doesn’t really need a full six octal digits.

Hexadecimal (base 16) uses similar conventions as other bases, with the rightmost
digit representing a multiple of 160 = 1, the second rightmost digit representing a multiple
of 161 = 16, the next representing 162 = 256 and so forth. However, for an individual
digit in hexadecimal, we need to be able to represent any quantity from 0 to 15, since we
cannot “carry” to the next higher power until reaching 16. When writing a hexadecimal
string, we wish to use a single character for each digit. Clearly, we can use the characters
“0” through “9” for the conventional values zero through nine. To extend beyond those,
computer scientists started using characters of the alphabet such that “A” represents
digit value ten, “B” as eleven, continuing to “F” as fifteen.

As an example, the hexadecimal string 'FAB4' represents the decimal value 64180 as
it is 15× 163 + 10× 162 + 11× 161 + 4× 160 = 15× 4096 + 10× 256 + 11× 16 + 4× 1 =
15 × 4096 + 10 × 256 + 11 × 16 + 4 × 1 = 61440 + 2560 + 176 + 4 = 64180.

You could also have Python do the conversion for you as int('FAB4', 16). Python also
accepts the corresponding lowercased characters in hexadecimal, thus int('fab4', 16).

21. Extend the implementation of the toDecimal function to allow for the use of bases
such as 16. In fact, you should allow bases up to 36, with letters A through Z
representing digits 10 through 35, while rigorously validating that the string literals
given are appropriate for the indicated base.

Hint: For character c from '0' to '9', we relied on syntax int(c) to get the integer
represented by that symbol. For uppercase letters 'A' through 'Z', the correspond-
ing digit value can be computed using the expression 10 + ord(c) − ord('A').

(We could explain why, but just trust us for now.)


