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We consider the problem of finding the second largest of n unique elements, in a setting in
which the only information that can be gained is through a comparison of two elements.
We will show that the best possible algorithm can located the second largest element
using at most n + dlgne − 2 comparisons. (We use notation lg n to mean log2 n.)

We begin by showing the upper bound, namely that there exist such an algorithm.
We can find the second largest element by first running a standard, balanced “single-
elimination tournament” to find the largest element. Since everyone except the winner
loses exactly once, this part of our procedure uses exactly n− 1 comparisons.

Since all elements other than the largest must have been defeated, we know that the
second largest element must have lost in a direct comparison with the largest element. We
can run a secondary tournament for all elements which lost to the winner. The original
tournament will require at most dlg ne rounds (giving first-round byes, if not exactly a
power of two), and so at most that many elements will have lost to the winner. Therefore,
the secondary tournament will use at most dlg ne−1 comparisons, and together, we have
used at most n + dlg ne − 2 comparisons.

Next, we show that any algorithm that correctly locates the second-largest element
must use at least n + dlg ne − 2 comparisons in the worst-case. For the sake of notation,
let A denote the largest element and B the second largest. For any algorithm to be sure
of its answer, it must have identified the group of (n− 2) elements which lie below B. In
order to verify that all of these elements do indeed lie below B, each element of this set
must have lost a comparison either to B or else to some other member of this group (as
a comparison between such an element and A would not help place it below B). This
implies that for any input, an algorithm must do at least n− 2 comparisons that do not
involve the maximum element.

Now we will show that an adversary can force any algorithm to do at least dlg ne
comparisons which do involve the maximum element, and therefore such an algorithm
performs at least n + dlg ne − 2 comparisons overall. To do so, we will consider the
following adversary. Given a set of previous comparison answers, we will say that an
answer to a new comparison is “known” if that answer is the same for all total orders
which are consistent with the previous comparisons. Our adversary will maintain for each
element x, the set L(x) of elements which are “known” to be less than or equal to x based
on previous comparisons. Initially, L(x) = {x} for all elements, as the only thing we can
be sure of is that x is less than or equal to itself. Now, when asked the question, “is
a ≤ b?”, if this answer is known, our adversary will give the known answer. Otherwise,
our adversary will say that a wins the comparison exactly when |L(a)| ≥ |L(b)|. By
answering questions in this way, we can be sure that there will always be at least one
total ordering which is consistent with all of our adversary’s answers.
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Using this adversary, we claim that if a particular element x has been involved in
exactly k comparisons, then |L(x)| ≤ 2k. We prove this by induction. As a base case,
we have seen that when k = 0, |L(x)| = 1 = 20. For the inductive step, assume
that |L(x)| ≤ 2k−1 after k − 1 comparisons involving x, and we consider the kth such
comparison between x and some y. In the case where x loses the comparison or if it
was already “known” that x was at least as large as y, then no new elements are added
to L(x), and so L(x) ≤ 2k−1 ≤ 2k. If the answer was not previously known, and the
adversary answers that x wins the comparison, then it must have been the case that
|L(y)| ≤ |L(x)|. If L′(x) is equal to the resulting set after the kth comparison, then we
see that L′(x) = L(x) ∪ L(y). But these are the only elements which can be added to
L(x). Therefore, |L′(x)| ≤ |L(x)|+ |L(y)| (some of L(y) may have already been in L(x)).
However, by induction we know that |L(x)| ≤ 2k−1, and by the adversary’s rules, we
know that |L(y)| ≤ |L(x)| ≤ 2k−1, and therefore, |L′(x)| ≤ 2k−1 + 2k−1 = 2k.

Finally, we are ready to show that any algorithm will have made at least dlg ne com-
parisons which involve the maximum element. Notice that since any algorithm eventually
knows the maximum element A, then it must be that L(A) = n. If A was involved in
k comparisons, we know that n = L(A) ≤ 2k, and so rearranging, we see that k ≥ lg n.
Since k must be integral, we see that k ≥ dlg ne, and therefore, the maximum element
was involved in at least dlg ne comparisons. This completes our proof.


