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ABSTRACT
In this paper, we present a software system which can auto-

matically determine how to assemble a product from its parts,
given only a geometric description of the assembly. Incorpo-
rated into a larger CAD tool, this system, the Stanford Assembly
Analysis Tool (STAAT), could thus provide immediate feedback
to a team of product designers about the complexity of assem-
bling the product being designed. This would be particularly
useful in complex assemblies where each designer may not be
fully aware of the impact of his design changes on the assem-
blability of the product as a whole. STAAT’s underlying data
structure is an efficient version of the non-directional blocking
graph (NDBG), a compact representation of the blocking rela-
tionships in an assembly. STAAT implements several techniques
using this structure, under a unified approach in which the same
software “machinery” can analyze the product under different
assembly constraints. In initial experiments conducted on rela-
tively small polyhedral assemblies of 20 to 40 parts and 500 to
1500 faces, using one-step translational motions, STAAT gener-
ated assembly sequences much more quickly than did previous
NDBG-based systems. We are working now on extending both
these results and the underlying theory to more sophisticated
cases.

INTRODUCTION
In many industries, the product development process is char-

acterized by insufficient consideration of the assembly process
by product designers. As a result, difficulties in assembling a
product are often not discovered until a prototype is constructed.
This is especially true when a designer working on one subsys-

tem makes changes which inadvertently affect the assemblabil-
ity or insertability of another subsystem. It would be helpful if
the CAD system used to design a product were able to provide
quick feedback regarding the difficulty of assembling it. This
feature would shorten the cycle time between the enactment of
design changes and the discovery of their effects on assembla-
bility. Such a CAD system would also be useful in such diverse
areas as robotic assembly, service and maintenance, the produc-
tion of “do-it-yourself” instructional manuals and videos, and
part retrieval and recycling. Furthermore, by imparting to the
system some notion of the costs of different assembly steps, a
manufacturer could use it to optimize the layout of a factory’s
assembly lines.

We have taken a major step forward toward the realization
of this goal with the creation of STAAT, the Stanford Assem-
bly Analysis Tool. STAAT is a stand-alone software system
able to perform automatic assembly-sequence generation and
complexity analysis, given only a geometric description of the
proposed assembly. At present, STAAT is only able to handle
certain types of assembly motions, namely, single-step transla-
tions; however, the underlying theoretical framework for STAAT
extends to other classes of motions as well, including one-step
translations with rotations, and n-step translations. Work is
presently underway on applying this more advanced reasoning
to a practical system (and, in fact, a new but related procedure to
handle translations with rotations has just recently been devel-
oped (Guibas et al., 1995)). Nonetheless, within the context of
assembly plans using one-step translations, STAAT represents a
significant advance in speed and efficiency over previous work.

Our motivation for this system is threefold: to build a useful
prototype for industry, to find new and useful algorithms in



geometric reasoning for assembly, and to validate these and
previous algorithms by implementing them in STAAT.

RELATED WORK
Many of the early assembly-reasoning systems were interac-

tive ones, querying the user for geometric-reasoning information
and generating assembly sequences from the answers (Bourjault,
1984; DeFazio and Whitney, 1987).

The problem of automatically generating assembly se-
quences is, in its full generality, an extraordinarily difficult
one, recently shown to be NP-complete in both the two-
dimensional (Kavraki and Kolountzakis, 1995) and three-
dimensional (Kavraki et al., 1993) cases. As a result, much
of the past and present work in this area focuses on restricted
variants of the problem. One common thread that appears in
most of this work is the strategy of “assembly by disassembly”,
in which an assembly sequence is generated by starting with the
completedproduct and working backwards through disassembly
steps.

Woo and Dutta (1991) created a system to remove one part
at a time via single-step translations in O(n log n) average time,
where n is the number of faces in contact. To do this they
used the notion of a “disassembly tree”, showing what parts in
the assembly must be removed before what other parts. They
also showed how their method could be used to find the optimal
sequence to access and remove a given part for a restricted class
of assemblies.

A number of systems exist to perform disassembly using
translational motions only along the major axes (Miller and
Hoffman, 1989; Hoffman, 1990; Lee and Shin, 1990; Sub-
ramani and Dewhurst, 1991). Hoffman (1990), in particular,
created a system which can handle curved surfaces as well as
flat ones, generates multi-step part trajectories, and also consid-
ers subassembly stability under gravity. Later, Hoffman (1991)
extended his analysis to translational or rotational trajectories
which are not necessarily along the major axes, by making ed-
ucated guesses about possible local motions in a trial-and-error
fashion.

Using computational-geometry approaches, Pollack et al.
(1988) wrote an algorithm to separate two polygons by a se-
quence of translations; and Valade (1985) wrote one to separate
two three-dimensional polyhedra by multiple translations. Not
surprisingly, perhaps, the latter algorithm is quite slow (1 hour
of CPU time for the example provided).

Wolter (1989), Homem de Mello and Sanderson (1989; and
Sanderson, 1990), and Lin and Chang (1993) each used a basic
approach similar to the one we shall describe here. Directions
of possible part removal are suggested by contact information
between the parts (or sometimes by the types of parts, e.g.,
screws). The feasibility of the motions is then determined by
“sweeping”, or projecting, the parts in the proposed direction.

However, we believe that our work, by condensing much
of the local analysis into a single compact data structure (the
NDBG), provides a significantly faster means of performing
these computations. This is evidencedby our system’s relatively
fast running times (reported below).

The work described in this paper is largely an extension of

the work of Wilson (1992). Wilson introduced the NDBG data
structure and described the means by which it could be used to
reason about disassembly. In this paper, however, we present a
significant improvement to this structure, and a system which
can not only determine if assembly/disassembly is possible, but
also seek to optimize particular figures of merit for the assembly
process. Finally, because our system is implemented in C,
whereas Wilson’s is in Common Lisp, its computation times are
reduced even further.

PRELIMINARIES
Before discussing STAAT in further detail, it is first necessary

to define the following terms:

� A disassembly graph is an AND/OR graph representing
all possible ways in which a product can be disassem-
bled (or, conversely, assembled) (Homem de Mello and
Sanderson, 1986). Each node in the graph represents a
subassembly, and each AND’ed pair of children for that
node represents two subassemblies into which the given
subassembly can be decomposed. When there are multi-
ple ways to break apart a subassembly, there are multiple
pairs of children OR’d together.

� The number of hands required to perform a given step in
an assembly sequence is defined as the number of sub-
assemblies that are moving with respect to one another.
For example, if a single subassembly is being removed
from the rest of the assembly, then two hands are re-
quired: one for the moving subassembly, and one for the
fixed subassembly. If the fixed subassembly is merely
resting on a table, then, the table acts as a “hand” in this
context.

� A binary assembly sequence is one which requires two
hands, i.e., no step requires three or more subassemblies
to move in different directions simultaneously.

� A monotone assembly sequence is one in which each
subassembly, once constructed, is final; that is, it is not
modified by subsequent operations. For example, the
latch assembly in Fig. 1 has no monotone binary assem-
bly sequence. The only possible assembly sequence for
this structure requires inserting P2 all the way into P1,
inserting that subassembly into P3, and then partially re-
moving P2 again. Because this last step changes the
P1-P2 subassembly, the sequence is non-monotone.

� A linear assembly sequence is one in which each step
involves the insertion of a single part into the rest of
the assembly. The assembly sequence shown in Fig. 2,
for example, is not linear because the step represented
by the long arrow requires the insertion of a two-part
subassembly into a three-part subassembly. An assembly
for which a linear assembly sequence exists is called a
linear assembly.

� A stack assembly sequence is one in which all the mo-
tions occur in a single direction, usually up-and-down.
Circuit boards, for example, often have stack assembly
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FIGURE 1: AN ASSEMBLY WITH NO MONOTONE BINARY
ASSEMBLY SEQUENCE (WOLTER, 1988).

FIGURE 2: A NON-LINEAR ASSEMBLY SEQUENCE.

sequences. An assembly for which a stack assembly se-
quence exists is called a stack assembly.

� Local motion is motion over an infinitesimal distance. A
subassembly is said to be locally free if it can move an
infinitesimal distance without colliding with other parts.

� Global or extended motion is motion over an infinite dis-
tance. A subassembly is said to be globally free if it can
be removed to infinity.

For more details on the preceding terms, the reader is referred
to Wilson (1992).

DESCRIPTION OF THE SYSTEM

Capabilities
STAAT, at present, is a stand-alone system whose input is a

geometric description of the assembly. A typical display screen
appears in Figure 3. When instructed to do so, STAAT computes
a sequence of steps necessary to disassemble the given assem-
bly; these steps can then be reversed to produce an assembly
sequence. STAAT can either illustrate this sequence graphically
(see Fig. 4), or do its analysis “quietly” and simply present its
conclusions.

In addition to the assembly sequences themselves, STAAT
can produce a number of complexity measures for the assem-
bly process. The computation of the assembly sequences can
be geared towards optimizing a particular complexity measure.
Some examples of these measures are:

� Linearity. STAAT can restrict its analysis to linear as-
sembly sequences, and thereby quickly determine if the

FIGURE 3: A TYPICAL DISPLAY SCREEN FOR STAAT.

assembly is a linear one. Linear assemblies have the ad-
vantage that they can be built using one long assembly
line, in which each “station” on the assembly line adds
a single part. This is helpful because multiple assembly
lines may require a great deal of coordination to ensure
that completed subassemblies arrive for final assembly at
the same rate and at the same time.

� Stack. STAAT can also quickly determine if the prod-
uct is a stack assembly requiring just up-and-down part
insertions. If so, then it will not need to be rotated dur-
ing its construction. This reduces both product cost and
production time.

� Ease of part removal. STAAT can attempt to find the
shortest partial disassembly sequence to extract a given
part. This is an indication of how difficult it would be
to service that part. For small assemblies, this compu-
tation can be done through an exhaustive search of the
disassembly graph, producing the absolutely optimal re-
moval sequence; for larger assemblies, more heuristic,
non-guaranteed techniques are required.

� Ease of fine-motion planning. Ideally, when a part is
inserted, there should be some physical features to align
it, but not so many constraints as to make it difficult
to insert (for example, in a 3x3 array of blocks, one
would usually not insert the middle block last). Using
a cost function to quantify these considerations, STAAT



FIGURE 4: STAAT ILLUSTRATING A DISASSEMBLY SE-
QUENCE.

can produce assembly sequences which attempt to make
component insertion as easy as possible.

Other measures of complexity which we are presently inves-
tigating (but have not yet implemented in STAAT) are:

� What is the minimum number of directions of motion
required for this assembly? This is a generalization of
the stack-assembly question.

� Given two parts P1 and P2, does an assembly sequence
exist that insertsP1 beforeP2? What if there are multiple
“A-before-B” requirements—can a sequence be found to
accommodate all of them?

Note that the relative importance of each of these complexity
measureswill dependon the particular applicationinvolved. For
example, linearity is often useful for small assemblies, but for
products with many parts, designers may instead want highly
non-linear assembly sequences, to maximize parallelism in con-
struction. Therefore, the authors do not presume to propose a
single figure of merit for what constitutes a “good” assembly
sequence. Rather, our purpose is to generate as many such mea-
sures as possible, and leave it to individual designers to choose
among them.

STAAT can be instructed to compute either a single disas-
sembly sequence or the entire disassembly graph. (See Figs. 5a
and b.) Computing the full graph is useful for small assem-
blies because once it has been computed, STAAT can quickly
find the absolutely optimal assembly sequence, according to the
above or other criteria. With appropriate user-interface facili-
ties, this analysis could even be made interactive, with the user
fine-tuning his optimality criteria based on the results of the
previous search.

Once an assembly plan has been computed, the system can
also produce a schematic diagram of an assembly line one could
use to manufacture the product. (See Fig. 6.)

Restrictions
STAAT is presently limited to assembly sequences which are

binary and monotone, and composed of single-step transla-
tions. The assemblies on which it operates are polyhedral and
defined by exact geometry, i.e., with no tolerances. (Recent
results in assembly planning with tolerances are described by
Latombe and Wilson (1994).) Additionally, the parts are con-
sidered free-flying objects in space; that is, no consideration
is given to grasping concerns, the tools necessary to handle the
parts, or physical stability. These are certainly important issues
which would have to be addressed, for instance, in a robotic
assembly system. However, they are beyond the scope of this
particular project.

The only exception to the above is that if requested, STAAT
is able to restrict its analysis to sequences with connected sub-
assemblies; this is useful because connectedness is often a nec-
essary (but not sufficient) condition for stability.

System Overview
STAAT’s basic operating procedure is illustrated in Fig. 7.

We shall shortly describe each of its main steps in more detail.
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FIGURE 5: AND/OR GRAPHS FOR THE BELL ASSEMBLY OF FIG. 3: (a) THE GRAPH GENERATED TO PRODUCE A
SINGLE ASSEMBLY SEQUENCE; (b) THE ENTIRE AND/OR GRAPH.

(a) (b)

FIGURE 6: (a) A 42-PART MODEL AIRCRAFT ENGINE ASSEMBLY; (b) A (NON-OPTIMIZED) SET OF ASSEMBLY LINES
THAT MIGHT BE USED TO MANUFACTURE IT.



However, very briefly, its behavior is as follows:
Find contacts. Take the CAD data for the parts and analyze

their geometry to detect contacts. The algorithm used here is
a fairly simple one, based on the surface representation of the
parts. Admittedly, there may be other algorithms which are more
efficient; however, contact detection is not the main focus of our
efforts, and we shall not go into the details of our procedure
here.

Find local translational freedom (LTF) cones. Combine
the contact information into an LTF cone for each pair of parts,
which gives the directions in which one part is locally free to
move with respect to the other.

Build NDBG. Combine the LTF cones into the Non-
Directional Blocking Graph, the central data structure describing
all the blocking relationships in an assembly.

Find DBG. For a given direction of motion, compute the
Directional Blocking Graph, a directed graph describing what
parts are blocking what other parts, for local motions.

Find locally-free subassemblies. Given a direction of mo-
tion and a DBG, find a subassembly that is locally free in that
direction.

Sweep. In order to examine global freedom, project all
parts in the given direction. If the “shadow” of a moving part
intersects the “shadow” of a stationary part, and the stationary
part is in front of the moving part, then there will be a collision;
try another motion.

Execute. Once a feasible action has been found, use this ac-
tion to split the assembly into two subassemblies. Then recurse.

By performing the above steps under different constraints
(e.g., only remove one part at a time), we can compute the
complexity measures described earlier.

The Non-Directional Blocking Graph is the data structure
which is the key to all this analysis. Therefore, it is appropriate
that we begin our more detailed discussion of STAAT with an
explanation of this structure and how it works.

The Non-Directional Blocking Graph
For many classes of part motion (e.g., infinitesimal transla-

tions, translations with rotations, single extended motions, n-
step translations, etc.), there exists a Non-Directional Blocking
Graph, or NDBG, which summarizes the blocking relationships
within an assembly for that class of motion. So far in this
project, only the NDBG for single-step translations has been
implemented, but the theoretical foundation for this structure
extends to other classes of motion, as well. As noted earlier,
work is presently underway on finding useful algorithms to ap-
ply this theory in a practical system, with some promising early
results (Guibas et al., 1995).

Even within the realm of NDBGs for single-step translations,
there are two types of NDBGs available: one for infinitesimal
translations and one for extended translations. In this paper
we shall focus primarily on the infinitesimal version (comple-
mented by sweeping operations for global analysis). However,
we have also recently made progress on implementing extended
NDBGs, as described below in a later section. Because ex-
tended NDBGs are guaranteed to yield disassembly solutions
when they exist, we ultimately plan to use them as the primary
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FIGURE 7: STAAT’S BASIC OPERATING PROCE-
DURE FOR GENERATING ASSEMBLY/DISASSEMBLY SE-
QUENCES.
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FIGURE 9: ADDING A THIRD PART SUBDIVIDES THE
SPHERE EVEN FURTHER, ACCORDING TO THE BLOCK-
ING RELATIONSHIPS AMONG THE PARTS.

means of performing disassembly.
We shall begin this discussion, however, by describing the

NDBG for infinitesimal translations.
Given a part floating in three-dimensional space, the set of

directions in which it can translate can be described by a sphere.
Now suppose we have two parts, as shown in Fig. 8a. The
sphere of directions of motion is now divided into three regions
(Fig. 8b):

1. the top hemisphere, for directions in which P1 is free to
move, but P2 is blocked by P1;

2. the bottom hemisphere, for directions in which P2 is free
to move, but P1 is blocked by P2; and

3. the “equator” of the sphere, for directions in which both
parts are free to move.

Continuing with this example, if we add a third part, as in
Fig. 9a, the sphere of directions is divided even further, as shown
in Fig. 9b. The new great circle on the sphere is caused by the
new plane of contact between P1 and P3.

In each region of this sphere, there exists a different blocking
relationship among the parts. However, if we “walk” around
within a region, the blocking relationship does not change (for
local motions). This is illustrated in Fig. 10. And this feature
is the key to the usefulness of this arrangement: By partitioning
along the contact planes, we have discretized the continuous
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FIGURE 10: WITHIN EACH REGION OF THE SPHERE,
THE BLOCKING RELATIONSHIP IS CONSTANT.
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FIGURE 11: THE NON-DIRECTIONAL BLOCKING GRAPH
FOR THE ASSEMBLY SHOWN IN FIG. 9a.

sphere of possible directions of motion into a finite number of
regions, such that the local blocking relationship within each
region is constant. Furthermore, the number of these regions is
polynomial in the number of planes of contact. This is a much
more manageable discretization than the approach often seen in
the literature, of generating all possible subassemblies (of which
there are an exponential number) and testing them one by one.

Typically, we represent the blocking relationships using a di-
rected graph (known as a Directional Blocking Graph, or DBG),
as shown in Fig. 11. The sphere and its associated DBGs are
together known as the Non-Directional Blocking Graph.

Now, the preceding discussion was limited to infinitesimal
motions; however, as noted above, it is also possible to create
an NDBG for extended motions. In this NDBG, the cells on the
sphere represent regions with a constant blocking relationship
for extended motions. This type of NDBG is discussed further
in a later section. It is also possible, theoretically at least, to
generate an NDBG which encompasses rotational as well as
translational motions. However, since these motions have six
degrees of freedom, such an NDBG would be a five-dimensional
sphere in six-dimensional space, and is beyond the scope of this
paper.

Again, for more details on NDBGs and DBGs, the reader is
referred to Wilson (1992).
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FIGURE 12: WHEN THERE CAN BE MULTIPLE CON-
TACTS BETWEEN PARTS, THE DBG’S MAY BE THE SAME
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A New, More Efficient NDBG
An improvement can be made to the NDBG structure just

described. Consider the assembly of Fig. 12a, which, unlike
the previous assemblies, contains multiple contacts between the
same two parts. As can be seen in Fig. 12b, many regions on
the resulting NDBG sphere all correspond to the same DBG.
For purposes of separating these two parts, the NDBG could
actually be simplified to something like Fig. 13. The reason
why the NDBG of Fig. 12b is less efficient is that its boundaries
delimit the regions where different contacts would be penetrated,
whereas what we are interested in is where any contacts between
these parts would be penetrated.

The “new” NDBG of Fig. 13 can be created if we combine
all of a part’s contacts into a local translational freedom cone,
or LTF cone, before proceeding with the NDBG construction.
An LTF cone is the subset of directions, from the entire sphere
of directions, over which a given part can move locally without
colliding with another given part. For example, in Fig. 14a,
the four planes of contact between parts P1 and P2 reduce the
possible motions of P2 to just the cone of directions shown in
Fig. 14b. This cone, then, is the LTF cone for P2 for collisions
with P1.1

1For a more rigorous definition of LTF cones, the reader is referred to
Wilson (1992). Wilson, however, did not use LTF cones to simplify the
NDBG, as we are doing here.
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FIGURE 13: THESE ARE THE ONLY DIVISIONS THAT RE-
ALLY MATTER IN THE NDBG OF FIG. 12b.
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FIGURE 14: AN EXAMPLE OF A LOCAL TRANSLATIONAL
FREEDOM (LTF) CONE.



By merging all the LTF cones from all pairs of parts in con-
tact, we obtain a much more efficient NDBG than if we use
the contacts directly. Compare, for example, Figs. 15a and
15b, which show actual NDBGs for the assembly of Fig. 6a:
one computed directly from the contacts, and one computed us-
ing LTF cones. As these figures illustrate, the elimination of
the unneeded arcs leads to a tremendous reduction in NDBG
complexity (and hence, a large improvement in computational
efficiency). Moreover, since each arc in the new NDBG rep-
resents the boundary of an LTF cone, we know that the local
blocking relationship will change as we go from one cell to the
next. Thus, we have taken all the contact constraints from all the
parts and distilled them into just those regions on the directional
sphere which matter. This makes the approach presented here
quite scalable to large assemblies.

Furthermore, the new NDBG has the advantage of being able
to accommodate cylindrical surfaces as well as polyhedral ones.
This is because a contact between cylindrical surfaces—for ex-
ample, a peg in a hole—creates an isolated point (or perhaps
two) on the NDBG sphere, in the direction(s) in which the peg
can be moved; these points are allowable in the improved NDBG
but not in the old one. It is our understanding that such cylin-
drical contacts represent a great majority of the curved-surface
contacts in practical assemblies.

In a later section, we shall describe in more detail how the
new type of NDBG is represented in memory.

Traversing the NDBG
Once the NDBG has been computed, STAAT enters into a

loop as it traverses the NDBG looking for directions in which
to pull out subassemblies. The primary directions in which it
looks are the so-called NDBG vertices, which are the points on
the NDBG sphere where two or more arcs intersect. As Wilson
(1992) showed, these directions are the most likely ones in which
to find locally-removable subassemblies. This is because given
two partsP1 andP2 in contact along some planeA (as in Fig. 8),
any motion alongAwill allowP1 andP2 to slide past each other,
whereas outside ofA, one part will always be blocking the other.
Therefore, local freedom is maximized along the contact planes,
and by extension, at the NDBG vertices, where multiple contact
planes intersect.

Now, it may well be that the directions of maximum local
freedom are not those of of maximum global freedom. Con-
sider, for example, the assembly in Fig. 16a. Locally, the best
directions to move in are �ŷ, since both parts are free to move
an infinitesimal distance in those directions. However, as can be
seen, separating the parts to infinity in these directions would not
be possible, because of protrusions in the larger part which we
could not possibly have detected in our contact-based analysis.
Hence, there may be cases where checking the NDBG vertices
for removable subassemblies is not sufficient, and it is necessary
also to examine directions in the middle of the NDBG faces (the
regions on the sphere bounded by the arcs).

Note that even if we do so, we are still not absolutely guar-
anteed to find a solution, because for every specific direction
we happen to check, there could be some small distant obstacle
which blocks motion in that particular direction. The solution to

(a)

(b)

FIGURE 15: THE NDBG FOR THE ENGINE ASSEMBLY
OF FIG. 6a, (a) COMPUTED DIRECTLY FROM THE CON-
TACTS, AND (b) COMPUTED FROM THE LTF CONES.
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FIGURE 16: ALTHOUGH THE NDBG VERTICES GIVE THE
DIRECTIONS OF MAXIMUM LOCAL FREEDOM, THERE
MAY BE GLOBAL CONSTRAINTS WHICH PREVENT EX-
TENDED MOTION IN THOSE DIRECTIONS.

this problem is to use the extendedNDBG. However, in practice,
using the local NDBG works quite well, and in the remainder
of this section we shall continue to discuss this approach.

Building and Using the DBG
The first task, once a candidate direction has been identified,

is to generate the Directional Blocking Graph (DBG) for that
direction (see Fig. 11). The DBG is a directed graph which
explicitly represents what parts are blocking what other parts for
local motion in the given direction. The first DBG constructed
is obtained by comparing the proposed direction to the various
LTF cones. Thereafter, as we traverse the NDBG, we update
the DBG incrementally to reflect new blocking relationships
(a much less expensive process than building the DBG from
scratch each time). For example, every time we enter an LTF
cone, some “A is blocking B” constraint is relaxed; every time
we exit one, such a constraint is re-imposed.

Once we have the DBG, we use it to identify locally-
removable subassemblies. These correspond to sets of nodes
from which there are no outgoing arcs leading to other nodes.
A graph-searching algorithm for finding such subassemblies
is described by Wilson (1992); it, in turn, relies on a strong-
connectedness algorithm given by Aho et al. (1985).

Every locally-free subassembly found in this way is then
passed to a sweeping module, which determines if the subassem-
bly can be removed to infinity. This is done by “sweeping”, or
projecting, the subassembly in the given direction (see Fig. 17).
If the projection of any moving part overlaps the projection of
any stationary part, and the stationary part is in front of the
moving part, then we know that there will be a collision. In this
case, we go back and try again with either a new subassembly
or an entirely new candidate direction and DBG.

Execution and Recursion
In this manner, we obtain a list of one or more actions with

which to partition the assembly. In the event that we have more

FIGURE 17: BY PROJECTING PARTS IN A PROPOSED
DIRECTION OF MOTION, WE CAN DETERMINE IF THERE
WILL BE A COLLISION BETWEEN THEM. THIS “GLOBAL”
ANALYSIS COMPLEMENTS OUR EARLIER LOCAL ANAL-
YSIS, WHICH GAVE US THE PROPOSED DIRECTION IN
THE FIRST PLACE.

than one feasible action, our choice among them will depend on
our overall objective. If we simply wish to determine, yes or
no, whether disassembly is possible, then the choice is arbitrary.
However, if, say, we are trying to extract a given part quickly,
then we might (heuristically) choose the action which removes
that part with a minimum of other parts next to it.

Once an action is selected, we use it to break up the assem-
bly into two subassemblies, and recursively disassemble those
as indicated in Fig. 7. As STAAT proceeds with the disassem-
bly, it builds up the AND/OR disassembly graph explicitly in
its memory. If, at some point, a subassembly is found which
cannot be disassembled, STAAT may be instructed to “back
up” the AND/OR graph and try to find another sequence of
actions to bypass that particular subassembly. (Normally, this
would be ineffective since adding parts back onto an insepara-
ble subassembly only yields another inseparable subassembly.
However, if the user has specified that all subassemblies be
connected, then it may well be that the additional parts could
render the assembly separable. In any event, this “try-try-again”
method is merely a user option.)

Upon completion, the sequence of actions can be reversed
to produce an assembly plan. This plan can be outputted with
a graphical demonstration, and/or with assembly instructions in
plain English.

A CLOSER LOOK AT THE SYSTEM

Representation of the NDBG
A geometry software package was developed in connection

with STAAT, to construct and maintain the NDBG as an ar-
rangement of polygons on a spherical surface. The input for
this module is a set of LTF cones (described earlier). Each LTF
cone produces a polygon on the unit sphere (see fig. 18). Possi-
ble degenerate polygons include full spheres, full hemispheres,
single arcs, and isolated vertices.

The collection of polygons partition the sphere into a set of



FIGURE 18: LTF CONES ARE MERGED TOGETHER TO
FORM THE NDBG. HOWEVER, THIS ARRANGEMENT OF
POLYGONS ON THE SPHERE IS SOMEWHAT DIFFICULT
TO REPRESENT AND MANIPULATE AS-IS.

FIGURE 19: BY EXTENDING VERTICAL “THREADS”
FROM EACH VERTEX, WE DECOMPOSE THE ARRANGE-
MENT INTO TRAPEZOIDS AND TRIANGLES, WHICH ARE
EASIER TO REPRESENT.

faces; however the boundaries of these faces may involve arbi-
trarily many edges and arbitrarily many connected components.
To simplify the required data structures, we use a popular tech-
nique, introduced by Chazelle and Incerpi (1984), to vertically
decompose the faces of the arrangement into trapezoids.

First, however, we artificially break the sphere into two hemi-
spheres, and choose an arbitrary pair of antipodal points on the
boundary of the hemispheres to be the “poles”. Although we
maintain the arrangement directly on the hemispheres, each
hemisphere can be viewed as a standard plane via a stereo-
graphic projection, and so we are able to apply techniques for
maintaining arrangements in the plane.

Now we are able to decompose the arrangement into trape-
zoids. From every vertex, we extend a vertical “thread” upwards
and downwards (towards the poles) until an edge of the arrange-
ment is reached. (See fig. 19.) At this point, the original faces
have been broken up into pieces with the guarantee that each re-
maining face is bounded by exactly two edges, and at most two
vertical threads. For this reason, these faces are called trape-
zoids. In addition, because the number of threads introduced is
bounded by twice the number of vertices, the asymptotic com-
plexity of the new arrangement has remained the same. A more
detailed explanation of trapezoidal decomposition is given by
Chazelle and Incerpi (1984).

The algorithm used for construction is a basic randomized
incremental approach, similar to those of Mulmuley (1993) or
Seidel (1991). For complete details of this section of the soft-
ware, the reader is referred to Goldwasser (1994).

Extended NDBGs and Minkowski sums
In this section, we define “extended” NDBGs and describe

how they are constructed using Minkowski sum computations.
We also provide a few details about the algorithm that is used.

Recall that until now we have been dealing with NDBGs
for infinitesimal translations. As noted earlier, though, the ex-
tended NDBG is defined exactly the same way, but substituting
extended motions instead of infinitesimal motions. That is, the
extended NDBG partitions the sphere of directions into regions
with constant blocking relationships for extended motions.

One advantage of using extended NDBGs to determine a
feasible motion is that the extended blocking relationships are
immediately known and stored explicitly. Thus, we do not need
to sweep each subassembly to check for collisions. This can be a
significant savings because when we use infinitesimal NDBGs,
a large number of sweeps (up to an exponential number, in the
worst case) may have to be tried before we successfully separate
the subassembly. Profiling of the STAAT executable confirms
that a significant amount of time is indeed spent doing sweeping
checks.

Another important advantage of using extended NDBGs is
that because all the extended blocking relationships are known
and stored, we are guaranteedto find a valid disassembly motion
when it exists, simply by searching the extended-NDBG sphere.

The extended NDBG can be easily constructed from a classi-
cal geometric object called the Minkowski sum (related closely to
the Convolution) of two polyhedra representing the parts. More
precisely, we use the Minkowski difference of the two polyhedra:



Definition. The Minkowski difference R of two
polyhedra P;Q � R3 is the set of vectors ~r such
that Q, translated in ~r, intersects with P .

The Minkowski difference R is known to be a multiply-
connected generalized polyhedron with holes.

The extended NDBG can be constructed from R using the
following method. An extended motion by partPi in a particular
direction � is feasible if and only if an infinite ray starting from
the origin in the direction � does not contain any vector in the
Minkowski difference of Pi with any other part Pj . In other
words, motion along � is feasible if and only if the projection
of R onto the unit sphere of directions does not cover the point
on the sphere in direction �. Therefore, the projection of the
Minkowski difference on the unit sphere gives us the generalized
extended-NDBG polygon on the unit sphere.

We compute the Minkowski difference using a simple tech-
nique of convolving pairs of faces and vertices. Furthermore,
for efficiency our algorithm makes special use of the fact that
only the projection of the Minkowski difference is needed, and
not the entire structure. Given two polyhedra P and Q, we take
each vertex of P and convolve it with a face of Q, and vice-
versa. (The Minkowski differenceR also contains faces that are
convolutions between two edges, but we do not need to compute
these because they do not add any extra area to the projection
of R on the unit sphere.) We use some heuristics here to cut
down on the number of faces to deal with. As the convolution
faces are computed, they are projected straight-away onto the
unit sphere. We then compute the union of all of the faces using
a 2-D Bentley-Ottman style line sweep technique (Preparata and
Shamos, 1985). We save on efficiency by doing a 2-D union
computation to find the projection directly rather than finding
the 3-D Minkowski difference and projecting it explicitly. For
more details on some of the geometric techniques used in the
algorithm, the reader is referred to Ramkumar (1994).

We compute the Minkowski difference of each pair of parts
in this manner and store the resulting extended-NDBG polygons
for later use in the disassembly process. At present, our imple-
mentation of this technique is relatively new, but after some
further testing we expect it to replace the sweeping module
described earlier.

IMPLEMENTATION
STAAT is implemented in C and uses the Motif toolkit in its

user interface. It runs on either a DEC alpha or a DEC 5000
workstation. We are also presently adapting it for use on a Sun
SPARCstation 10.

The assembly data format, which was developed in-house,
is a straightforward boundary representation of a polyhedral
assembly. Faces may be non-convex and may contain holes.
The data format also supports cylindrical and circular features,
for future expansion of STAAT.

A separate stand-alone program can convert IGES 5.1 data
files into STAAT’s format; this process transforms any curved
surfaces into a triangular mesh.

EXPERIMENTAL RESULTS
Experiments were conducted to measure STAAT’s running

times using infinitesimal NDBGs plus sweeping. The results
are shown in Table 1. Three computation times were measured:

� The time to partition the root node, i.e., break the top-level
assembly into two subassemblies;

� The time to find a complete disassembly sequence for the
assembly; and

� The time to compute the entire AND/OR graph for the
assembly. For the larger assemblies, this is not feasible
in practice because of the large size of the graph.

As can be seen, the running times are significantly better
than those reported by Wilson (1992), often by a full order of
magnitude. Much of this is probably due to the fact that STAAT
is implemented in C, and Wilson’s GRASP is in Common Lisp;
however, we also believe that the more efficient NDBG structure
contributes significantly to the speedup. The running times
shown also compare quite favorably to those reported by Lin
and Chang (1993) (� 2 minutes for a 14-part assembly). In the
near future, we hope to obtain CAD data files from industry,
with which to conduct further tests of STAAT.

At the time of this paper’s submission, the extended NDBG
module has not been fully incorporated into the main system, so
no comparable running times are presently available using that
method.

CONCLUSION
We have presented a system, STAAT, to automatically deter-

mine how to assemble or disassemble a product using single-
step translations, given only a description of the parts’ geome-
try. This is accomplished through the use of the non-directional
blocking graph, a compact data structure summarizing all the
blocking relationships in an assembly for a given class of mo-
tions (in this case, single-step translations). Two types of ND-
BGs were presented: one for infinitesimal motions, which is the
primary version used by our system today, and one for extended
motions, which when fully incorporated will be more complete
and give STAAT the guarantee of finding disassembly solutions
when they exist.

In addition to finding the assembly sequences themselves,
STAAT can also be used to compute various complexity mea-
sures for the assembly process, and to find assembly sequences
which attempt to optimize these measures.

The results presented here represent a significant improve-
ment over previous work along these lines. Recent related work
by other researchers in our laboratory (Guibas et al., 1995;
Latombe and Wilson, 1994; Wilson et al., 1995) extends the
ideas described above to include rotation and toleranced assem-
blies. Other possible directions of future work include multi-
step translations, the handling of simple curved surfaces (e.g.,
cylinders and spheres) as well as flat ones, and the discovery
and computation of new measures of assembly complexity.



TABLE 1: RUNNING TIMES FOR THE VARIOUS ASSEMBLIES, IN SECONDS, EXCLUDING TIME TO FIND CONTACTS.
(GRASP FIGURES ARE FROM WILSON (1992).)

Number STAAT (DEC alpha) STAAT (DEC 5000) GRASP (DEC5000)
Assembly of Parts Node Sequence Graph Node Sequence Graph Node Sequence Graph

Bell 17 0.03 0.47 8.4 0.12 1.6 25 0.9 16 522
Bell 22 0.17 0.6 53 0.6 2.3 157 1.4 21 2186

Engine 12 0.15 1.0 6.72 0.5 4.0 242 0.5 30 42
Engine 30 0.20 3.0 — 0.7 11 — 3.6 112 —
Engine 42 0.13 3.8 — 0.5 14 — 8.5 189 —
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logique de l’assemblage automatisé: élaboration automatique
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