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ABSTRACT

Our work focuses on various complexity measures for two-handed assembly sequences.
For many products, there exist an exponentially large set of valid sequences, and a nat-
ural goal is to use automated systems to select wisely from the choices. Although there
has been a great deal of algorithmic success for �nding feasible assembly sequences,
there has been very little success towards optimizing the costs of sequences. We attempt
to explain this lack of progress, by proving the inherent di�culty in �nding optimal,
or even near-optimal, assembly sequences. To begin, we de�ne, \virtual assembly se-
quencing," a graph-theoretic problem that is a generalization of assembly sequencing,
focusing on the combinatorial aspect of the family of feasible assembly sequences while
temporarily separating out the speci�c geometric assumptions inherent to assembly se-
quencing. We formally prove the hardness of �nding even near-optimal sequences for
most cost measures in our generalized framework. As a special case, we prove equally
strong inapproximability results for the problem of scheduling with AND/OR precedence
constraints. Finally, we re-introduce the geometry, and continue by realizing several of
these hardness results in rather simple geometric settings. We are able to show strong
inapproximability results, for example using an assembly consisting solely of unit disks
in the plane.

Keywords: Assembly sequencing, approximability, cost measures, and/or scheduling,
non-directional blocking graphs
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1. Introduction

Given a set of parts and a geometric description of their relative positions in a

product, the assembly sequencing problem is to devise a sequence of collision-free

operations that results in the assembly of the product from the individual parts.

E�cient algorithms have been developed for many classes of motions that guarantee

to �nd a valid assembly sequence when one exists. Since assembly sequencing is

a preprocessing phase for a long and expensive manufacturing process, any work

towards �nding a better assembly sequence is of great value when it comes time to

assemble the physical product in mass quantities. The IEEE Technical Committee

on Assembly and Task Planning28 summarized the state of assembly sequencing

in 1994 by explaining, \after years of work in this �eld, a basic planning method-

ology has emerged that is capable of producing a feasible plan . . . The challenges

still facing the �eld are to develop e�cient and robust analysis tools and to de-

velop planners capable of �nding optimal or near-optimal sequences rather than

just feasible sequences." Indeed, better understanding the inherent complexity of

assembling a product is critically important for bringing assembly planning systems

into industrial use, as the assembly sequence will be used in mass quantities during

manufacturing. Many attributes of a sequence will have a direct e�ect on the cost

of manufacturing, for example, the number of operations required, the number of

di�erent directions of motion used, and so on. In cases where we �nd that the

optimal cost assembly sequence is quite expensive, this information can be used by

engineers in redesigning the product in a design-for-assembly feedback loop. Be-

cause modern products are being designed with hundreds or thousands of parts or

more, the e�ciency of algorithms used for sequencing is also critical.

Unfortunately, there has been little algorithmic success in optimizing the cost

of assembly sequences. Our work explains this lack of progress by formally proving

the hardness of �nding optimal or even near-optimal cost sequences in a variety of

settings. We attempt to classify the di�culty of �nding near-optimal solutions for

many variants of assembly sequencing based on the desired cost measure, the speci�c

goal required, and other restrictions placed on the sequence. Besides considering the

standard goal of fully assembling a product from its individual parts, we consider

several motivated partial disassembly tasks such as removing a key part from an

assembly. Our list of cost measures includes many of those suggested by both

industry and previous researchers. Examples include minimizing the number of

distinct directions of motion used during a sequence, minimizing the number of

steps in a sequence, or minimizing the number of re-orientations of the assembly.

We begin by studying a graph-theoretic generalization of assembly sequencing

which we term virtual assembly sequencing (vas). For a given direction of motion,

the geometric model of the product can be analyzed to construct a graph that

represents the blocking relationships among the parts. Once a collection of such

graphs has been computed for a representative set of motions, it can be analyzed

to e�ciently compute a feasible assembly sequence, when one exists. Through the

introduction of the non-directional blocking graph,68;70 this technique has resulted in

much of the success in �nding feasible assembly sequences for a variety of settings.
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Our generalized model considers this set of blocking graphs as the original input to

the problem, and we examine whether these graphs can be used to �nd near-optimal

sequences, rather than simply feasible sequences.

We �nd that the problem of optimizing assembly sequences in our model captures

the di�culty of several known covering, scheduling, and supersequencing problems.

This allows us to formally prove the hardness, not only for �nding the optimal cost

solution, but even for �nding any near-optimal solutions. Our strongest results

show that it is hard to �nd any sequence, for many of the vas variants, with a cost

which can be bounded to within a 2log
1�
 n-factora of the optimal cost sequence

for any 
 > 0. As a special case, when sequences are restricted to move only

one part at a time, this problem can be modeled as an instance of scheduling

with and/or precedence constraintsb. We prove similar inapproximability results

for this scheduling problem. Since our virtual assembly sequencing model is a

generalization, our lower bounds do not necessarily apply to the original problem

as we no longer assume that the set of input graphs is the result of any original

geometric setting. We continue by showing that many of our lower bounds can

indeed be realized geometrically, thereby proving the hardness of the true assembly

sequencing problems. As an example, we consider a setting consisting entirely of

unit disks in the plane, and we look at the task of removing a given disk from the

rest of the assembly using only individual translations to in�nity. We prove that

achieving a 2log
1�
 n-approximation to minimizing the total number of disks which

must be removed to access the given disk is hard for any 
 > 0. A more complete

summary of our exact results is given later, in Tables 2{5.

The paper proceeds as follows. In Section 2, we discuss previous work in the areas

of assembly sequencing, approximation theory, and computational geometry, which

relate to our work. In Section 3, we review the de�nition of the assembly sequencing

problem and speci�cally examine the development of the non-directional blocking

graph in Section 3.1. We introduce our virtual assembly sequencing problem in

Section 4, as we formalize a list of possible tasks, restrictions, and cost measures

for assembly sequencing. In Section 5, we de�ne the and/or scheduling problem.

Next, we approach the issue of how well the choice of sequences can be optimized

over such cost measures. Even in cases where �nding the exact optimal solution

is di�cult, it is desirable to �nd approximate solutions which are near-optimal. In

Section 6, we give reductions relating the many di�erent variants of the problems

to each other. Then in Sections 7 and 8, we prove that �nding even an approximate

solution for most variants is quite hard in our generalized framework. Finally, we

re-introduce the geometry in Section 9, proving the inapproximability for several

cost measures, even in the original geometric settings. Section 10 discusses some

particularly interesting complexity issues relating to and/or scheduling, and �nally

Section 11 concludes with a discussion of open directions for continued research.

aThis factor, 2log
1�
 n, lies between polynomial and polylogarithmic in that 2log

1�
 n = o(n�)

for any � > 0, and 2log
1�
 n = !(logc n) for any constant c.

bNote, this model is in no way related to the and/or tree used by Homem de Mello and
Sanderson35;37 for representing all feasible assembly sequences
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2. Previous Work

2.1. Assembly Sequencing

The use of automation in assembly sequencing has increased rapidly over the

years.18;34;36;37;52;68;72 Progressing from days when assembly sequencing was purely

a craft of the human designers, computers have become a powerful tool in the se-

quencing process. Early systems resulted in potentially exponential time generate-

and-test sequencers, operating by generating candidate operations and testing their

feasibility.37;71 The problem of �nding a valid assembly sequence was later shown

to be intractable in many general settings.38;45;46;58;69;72 This led some researchers

to consider restricted, but still interesting, versions of the problem, for instance

requiring monotone sequences, where each operation generates a �nal subassembly,

and two-handed sequences, where every operation merges exactly two subassemblies.

For many classes of motions parameterized by a constant number of degrees of free-

dom, polynomial algorithms were developed to �nd an assembly sequence when one

exists.29;32;68;70 A good deal of this success can be achieved within the framework

of non-directional blocking graphs.31;68;70 As our work is intricately related to this

approach, in Section 3.1 we review the concept of non-directional blocking graphs

and the subsequent results. Other techniques allow for the enumeration of all pos-

sible assembly sequences,18 however for most products there will be exponentially

many such sequences. There are also several important tasks, such as removing a

given part for service, which arise as natural disassembly problems. For this reason,

some researchers have focused speci�cally on models for disassembly.50;63;66

With the ability to �nd feasible sequences e�ciently, several researchers have fo-

cused on the importance of using automated tools to choose cost-e�ective sequences.

There are many possible ways to de�ne the cost of a sequence, depending on how

these sequences will be used in a manufacturing system. Based on a great deal

of work with industrial applications, Boothroyd et al.9;10 suggest several empirical

measures that e�ect the cost of assembly for a product; more formal complexity

measures have been de�ned by Wolter72 and by Wilson and Latombe70; and a col-

lection of many cost measures for assembly planning has been gathered by Jones

and Wilson.41 Once a cost measure has been chosen, the question becomes how

to �nd a low cost assembly sequence e�ciently. Several papers have considered

methods for logically grouping parts of an assembly,12;56 thereby reducing the ef-

fective number of parts in an assembly and thus reducing the search time required

for �nding an optimal sequence. Although these techniques are quite practical,

they simply delay the eventual need for better automated reasoning to overcome

the exponential computation required for increasingly large data sets. Researchers

have also considered the use of simulated annealing55 and petri nets11 in �nding

low-cost assembly sequences. Both of these techniques su�er either in requiring

possibly exponential time in �nding the optimal sequence or else in quickly �nding

a sequence without any provable guarantee as to its quality. For a restricted class of

inputs that have a so-called \total ordering" property, a greedy algorithm is given



Complexity Measures for Assembly Sequences 375

that claims to produce the minimal length sequence to remove any give part,20;73

however the required input property does not have a clear de�nition. For the gen-

eral setting, our results in Section 9.3 will prove not only the di�culty of �nding an

optimal sequence by this cost measure, but even a near-optimal solution. Finally,

several software systems o�er the user the option of optimizing the sequence over a

choice of complexity measures,44;62;72 however these systems must rely on current

techniques and thus either require possibly exponential search techniques to �nd

the true optimum, or else polynomial heuristics with no performance guarantees on

the cost of the resulting sequence.

2.2. Approximation Theory

For most of our variants, �nding the optimal cost assembly sequence is NP-hard.

As the number of parts and complexity of products keeps increasing, it quickly be-

comes infeasible to rely on an exponential time search to �nd the best solution.

Unless P=NP, there is little hope of e�ciently �nding the true optimal solution,

however this does not rule out the possibility of �nding approximate solutions ef-

�ciently. There is nothing particularly magical about the exact best solution from

an industrial point of view; if an e�cient algorithm could guarantee that it could

�nd a sequence whose cost was, for example, within 1% of the optimal sequence,

this would probably be well received.

Research in the theory of approximability has consider exactly this issue for other

NP-hard optimization problems.4;22;40;57 Since we cannot expect to �nd the optimal

solution in polynomial time, the goal is to develop a polynomial-time approximation

algorithm that returns a solution whose cost can be bounded by some function of

the true optimal cost. A standard measure for the quality of an approximation

algorithm is the approximation ratio, comparing the cost of the solution returned

by the algorithm versus the cost of the true optimal solution. Although all NP-

complete decision problems can be reduced to one another, the approximability of

similar optimization problems can be quite di�erent, ranging from those which can

be approximated arbitrarily closely to the optimum, to those for which getting even

a very rough approximation is already NP-hard.

Many researches have worked towards classifying the approximability of di�er-

ent NP-hard problems.4;5;14;59 We will consider four broad classes de�ned by Arora

and Lund4 and shown in Table 1, which group problems based on the strength of

the inapproximability results which have been proven. Class I includes all prob-

Table 1. The four classes and their representative problems (Arora and Lund4).

Class Factor of Approximation that is hard Representative Problems
I 1 + � Max-3Sat
II O(log n) Set Cover

III 2log
1�
 n Label Cover

IV n� Clique
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lems for which approximating the optimal solution to within a factor of (1 + �) is

NP-hard for some � > 0. The canonical problem for this class is Max-3Sat, and

the class includes all Max-SNP-complete59 problems, for example Vertex Cover,

Metric tsp, Max Cut, and others. Class II groups those problems for which it

is quasi-NP-hardc to achieve an approximation ratio of c � logn for some c > 0. The

typical such problem in this class is Set Cover, for which the threshold of approx-

imability has been placed at lnn(1 + o(1)).21 For problems in Class III, it is quasi-

NP-hard to achieve a 2log
1�
 n factor approximation for any 
 > 0. Label Cover3

is the canonical problem in this class, although the class contains several other nat-

ural problems such as Longest Path43 and Nearest Lattice Vector.3 Finally,

Class IV consists of the hardest problems, namely those for which it is NP-hard to

achieve an n� approximation factor for some � > 0. This class includes problems

such as Clique33 and Coloring.53

Because we will use these problems in several reductions, we give both de�nitions

and notation for the Set Cover and Label Cover problems. For the Set Cover

problem, we are given a ground set U of items, and a collection of subsets of these

items, S1; S2; : : : ; Sn. The output is a sub-collection of subsets so that every item

of U is contained in at least one of the chosen subsets. The goal is to minimize

the number of chosen subsets. The Label Cover problem is de�ned3;4 as follows.

The input is a regular, bipartite graph, G = (U; V;E), a set of labels f1; 2; : : : ; Ng,
and for each edge e 2 E, a partial function �e : f1; 2; : : : ; Ng �! f1; 2; : : : ; Ng. A
labeling associates a non-empty set of labels with every vertex in U [V , and is said
to cover an edge e = (u; v), if for every label b assigned to v, there is some label

a assigned to u such that �e(a) = b. The goal of Label Covermin is to give a

labeling that covers all edges, while minimizing the total number of labels, counting

multiplicities, assigned to nodes of U .

Finally, we need to de�ne the notion of approximation-preserving reductions.57;59

Classical reductions, for instance those equating all NP-complete problems, show

that �nding the optimal solution for one problem can be used to �nd the opti-

mal solution for another problem. Unfortunately, such reductions do not guarantee

anything about the relation between approximate solutions, hence the vast di�er-

ence between the approximability of various NP-complete problems. Therefore,

to compare the approximability of di�cult problems, it is necessary to use such

approximation-preserving reductions that show not only that �nding the optimal

solution of one problem can be used to �nd the optimal solution of the other, but also

that an approximate solution of one can be translated to an approximate solution

of the other, with a similar performance ratio. Throughout this paper, we will use

two types of reductions. For our purposes, we say that problem A reduces to prob-

lem B if a polynomial-time algorithm for B which achieves an f(n)-approximation

can be used to give a polynomial-time algorithm for problem A which achieves a

[(1+c) �f(O(n))]-approximation for some constant c � 0. Notice that this allows us

cWhereas a problem is NP-hard if solving it would imply NP � DTIME(nO(1)), a problem is

quasi-NP-hard if solving it would imply that NP � DTIME(npoly(log n)). \A proof of quasi-NP-
hardness is good evidence that the problem has no polynomial-time algorithm."4
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to introduce a certain amount of additive error in the approximation. Secondly, we

say that problem A reduces to problem B with a polynomial blowup if a polynomial-

time algorithm for B which achieves an f(n)-approximation can be used to give a

polynomial-time algorithm for problem A which achieves a [(1 + c) � f(poly(n))]-
approximation for some constant c � 0. Such a reduction generally results from

a construction in which the problem size undergoes a polynomial blowup. In this

sense, even if the absolute ratio of the approximation remains the same through

the construction, the ratio as a function of n may change as the value of n has

increased. If problem A is known to lie in one of the four particular approxima-

tion classes above and we show that problem A can be reduced to problem B by

either of the above reductions types, this shows that problem B also lies in that

same approximation classd. Both the additive error and the polynomial blowup do

not e�ect the class in which a problem lies; they merely e�ect the exact constants

shown in the hardness result. The reason that we di�erentiate between a reduction

with or without a polynomial blowup is because of the e�ect that it has on trying

to use these reductions to prove upper bounds. In a sense, a reduction from A to

B implies that B is \at least as hard" as A, however this intuition may be a bit

misleading. If we were able to �nd a non-trivial approximation algorithm for B, we
may assume that this also results in a non-trivial approximation for A, yet this is
not necessarily the case with a polynomial blowup. For example, if we exhibit an

n1=2-approximation for B, our reduction provides us with an na-approximation for

A, however we would have no guarantee that a < 1, and hence this result may not

beat the trivial n-approximation for our problems.

2.3. Computational Geometry

Assembly sequencing is an intriguing combination of a combinatorial and ge-

ometric problem. Quite naturally, research from computational geometry relates

very closely to assembly sequencing. The separability of objects has been well stud-

ied in the geometric community. For example a classic result of Guibas and Yao30

concerns a collection of convex parts in two dimensions. The result stats that for

any given direction there will always exist some part that can be translated to in�n-

ity in that direction without disturbing the others, and thus the single direction of

translation can be used to repeatedly remove parts one at a time. Such a sequence,

removing objects one at a time using translations in a common direction, is known

as a depth order. Similar separability issues are studied by Toussaint67 for more

general classes of shapes in two dimensions, such as monotone or star-shaped poly-

gons. For a collection of balls in Rd, Dawson15 shows that there exists at least d+1

balls, each of which can be translated to in�nity in some direction. In contract,

Snoeyink and Stol�64 demonstrate a set of convex parts in three dimensions which

cannot be disassembled using two hands. A study for constructing a sequence for

the individual removal of polygons from a collection in two dimensions introduced a

structure termed the movability wheel,19 which can be thought of as a precursor to

dTechnically, to place a problem into Class I through this type of reduction, it is also necessary
to pay attention to the value of the constant c.



378 M. H. Goldwasser & R. Motwani

the non-directional blocking graph. More recent work has looked at the e�ciency

of computing and verifying depth orders.13;16;17

A surprising element of our results is that some of our general lower bounds

given in Section 8, are realized geometrically in Section 9. More often than not,

an optimization problem becomes signi�cantly easier when its input is restricted

to a low-dimensional, geometric setting. For example, there exists some c > 0 for

which achieving a (1+c)-approximation for theMetric tsp problem is NP-hard,60

however in the Euclidean plane, TSP can be approximated to within (1 + �) for all

� > 0.2 Similarly, achieving an n�-approximation for Minimum Independent Set

is NP-hard,33 however for planar graphs, Minimum Independent Set can be ap-

proximated to within (1 + �).6 Similar results hold for most optimization problem

when restricted to planar graphs.6;47 There exists a (1 + o(1)) ln n lower bound

for approximating the Set Cover problem,21 however the Rectangle Cover

problem, covering a set of axis-aligned rectangles with minimum number of points,

has no such inapproximability results.57 Our lower bounds provide some of the

strongest such inapproximability results for a natural, combinatorial, geometric

problem. Similar lower bounds have been shown for the Nearest Lattice Vec-

tor problem,3 however this problem is not combinatorial, and although it shares

the same lower bound as our problem, we cannot directly relate the hardness of the

two problems.

3. De�nition of Assembly Sequencing

In general terms, the input to an assembly sequencer is a product, consisting of

a set of parts, and described by a geometric model of the parts and their relative

positions, as well as a family of allowable motions. For example, an assembly may

consist of a collection of unit disks in the plane, and the family of allowable motions

may be translations from in�nity. The classic goal is to produce a sequence of

operations resulting in the construction of the product from its individual parts.

Each operations combines a set of subassemblies, using a motion from the allowable

family.

In the assembly sequencing problem, we will concern ourselves only with �nding

a feasible sequence of collision-free motions. We are not concerned with grasping

the objects, the forces involved, or the stability of the subassemblies, rather we will

think of our parts as free-
oating objects. Additionally, we will assume that the

product is made of rigid parts, we assume that each operation is two-handed, that

is, combines exactly two subassemblies, and we consider only monotone assembly

sequences, that is, when an operation has placed a part in a subassembly, that part

may no longer be moved relative to the subassembly. Although restrictive, these

assumptions are common in assembly sequencing and are often consistent with the

technical capabilities of manufacturing systems.

Under these conditions, we may think of devising an assembly sequence by

constructing a disassembly sequence and then reversing the entire sequence. If

considering non-rigid parts, stability, �xturing, and insertion forces, assembly and

disassembly sequences are no longer symmetric.51 The advantage of the assembly-
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by-disassembly approach is that the �nal assembled product is usually much more

constrained than the initial con�guration of parts, and so infeasible plans can be

eliminated more quickly in this way. Additionally, there are several jobs related

to maintenance or recycling of products which require a partial disassembly of a

complete product. With this in mind, the goal of a two-handed, monotone assembly

sequencer is to start with the fully assembled product, and partition the set of parts

into two groups that can be separated by a collision-free motion. Once this is done,

each of the resulting subassemblies can be disassembled. The structure of this

decomposition can be represented naturally as a binary assembly tree. Figure 1,

provided by Wilson and Latombe,70 gives an example of such an assembly tree

for a simple two-dimensional product. The root of the tree represents the fully

Fig. 1. Assembly tree for a simple product

assembled product, and the children of an internal node represent two subassemblies

that can be combined together to produce the larger subassembly represented by

the parent. Note, however, that the assembly tree only represents the structure of

the decomposition, not the desired sequence in which the operations are performed.

3.1. A Review of Non-directional Blocking Graphs

A key concept in understanding current techniques in assembly sequencing is

that of a directional blocking graph (dbg). For a speci�c motion, a dbg can be

de�ned as a directed graph with a node for each part of the assembly, and an edge

A! B, if part A collides with part B when that motion is applied to A while B re-

mains stationary. Figure 2 again shows the two-dimensional product of Wilson and

Latombe,70 with two particular dbg's for in�nitesimal translation. The blocking

graph for a given motion provides a compact representation of all collision-free par-

titions for that motion, as each directed cut between some subsets S and S in a dbg

corresponds to a collision-free action separating S from S. Since a dbg represents
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P1 P2

P3 P4

P1 P2

P3 P4

P1 P2

P3 P4

d1 d2

Fig. 2. A simple assembly and two dbg's for in�nitesimal translation

all possible operations for a single direction of motion, by constructing a dbg for

each possible motion, we can fully represent all possible operations. Unfortunately,

there may be in�nitely many di�erent motions.

The key insight is that many distinct motions may be represented by the identical

dbg, since slight changes in a direction may not e�ect the blocking relationships

between any of the parts. This fact led to the development of the non-directional

blocking graph68;70 (ndbg). During the construction of an ndbg, the space of

motions is divided into equivalence classes based on the blocking graphs, and the

resulting ndbg consists of a single dbg for each equivalence class. Thus the ndbg

completely captures the necessary geometric information for identifying all valid

operations for those motions. The only issue remaining is the number of equivalence

classes and how to compute them.

In the original work of Ref. [68], it is shown that the number of such equivalence

classes is polynomially bounded in the complexity of the input for three-dimensional

polyhedra, when the operations involved are either in�nitesimal translations, in-

�nitesimal translations with rotations, or translations to in�nity. In a series of

work since then, geometric algorithms have been developed and improved for build-

ing the ndbg when the motion class allowed includes in�nitesimal translations,70

extended translations (i.e., to in�nity),70 multiple step translations in the plane,32

and in�nitesimal generalized motions (i.e., rigid body motions).29;70 As a general

rule, it seems that a family of motions with a constant number of degrees of freedom

leads to a polynomial number of distinct equivalence classes. A more recent survey31

presents a uni�ed framework for understanding the collection of work surrounding

the non-directional blocking graphs.

For each of these families of motions, the ndbg framework immediately provides

a polynomial-time algorithm for constructing a feasible (dis)assembly sequence, if

one exists. After constructing a polynomial set of dbg's, an arbitrary disassembly

sequence is found by taking any legal separation using any of the directions, and then

recursing on the resulting subassemblies. Since the removal of parts can only reduce

the blocking relationships, there will be no false dead ends and this procedure will

result in either producing an entire assembly tree, or else will reach a subassembly

which cannot be partitioned by any of the motions, thereby proving that no assembly

sequence exists. This algorithm runs in polynomial time, is quite simple, and has

been implemented in assembly sequencing systems for many of the above motion

classes.29;44;62;68 As we will see, searching for a \good" sequence in this way is not

quite so simple.



Complexity Measures for Assembly Sequences 381

4. Virtual Assembly Sequencing (vas)

Our model is a generalization based on the previous success of using non-

directional blocking graphs (ndbg's) for constructing valid assembly sequences.

We assume that our problem begins as we are handed the complete, representa-

tive set of directional blocking graphs, and our goal is to use these graphs to design

a two-handed, monotone assembly sequence that optimizes some cost measure. Our

reason for considering the graphs as the input to the problem is that this 
ow of con-

trol has been used in all geometric settings for which the ndbg framework has been

successfully. The existing algorithms for di�erent settings are specialized only in the

use of geometric techniques for constructing the full set of blocking graphs. Once

these graphs have been built, the algorithms succeed purely through the analysis of

the graphs.

We de�ne the virtual assembly sequencing problem (vas) as this graph-theoretic

generalization of the original assembly sequencing problem. We ignore the underly-

ing geometry for this problem, by considering the sole input to be an arbitrary set

of directed blocking graphs.

Input: A set P of n items.
A family F of directed graphs on n labeled nodes.

Output: A (dis)assembly sequence using only \legal" operations.

We will conventionally call each member of the set P a \part," and we will call

each member of the family F a \direction." We inherit the de�nition of \legal"

operations from the notion of directed blocking graphs. An edge from part A to

part B in a particular graph signi�es that if part A is moved using the associated

motion while part B remains stationary, then part A will collide with part B. Given

a subassembly consisting of parts P 0 � P , it follows that a direction d 2 F can be

used to decompose P 0 into sets S and P 0 � S if the graph d has no edges directed

from a part in S to a part in P 0�S. In graph-theoretic terms, an operation is legal

if the partition provides a directed cut on the subgraph of d induced by the set P 0.

It is important to understand that vas is truly more general than the original

problem, precisely because we do not make any assumptions about the structure

of the individual graphs or their interdependence on each other. For this reason,

any positive algorithms for vas will immediately apply to all settings for which

the ndbg has been e�ciently computed. Negative results for this model, however,

do not immediately apply to the geometric settings. In reality, when an ndbg is

constructed from a geometric description of a product, the resulting set of blocking

graphs may have some additional structure. It is conceivable that this structure

could allow for additional success in devising assembly sequences, and therefore

vas may indeed be a strictly harder problem than the original assembly sequencing

problem. We will consider the original geometric settings in Section 9.

4.1. Possible Goals

In Section 3, we said that the goal of a two-handed, monotone assembly se-

quencer, viewed in light of assembly-by-disassembly, is to produce a sequence of
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actions that completely decomposes the original product into its individual parts.

Although this is a common task, there are other variants that are highly motivated

by industrial applications. The following contains a list of possible goals, along with

their motivations. Each of these goals is de�ned based on the structure required of

the resulting assembly tree, discussed in Section 3.

G1 Full disassembly.

This is the classical problem. The goal is to �nd a sequence of operations

that begins with the fully assembled product, and results in the complete

decomposition into individual parts. Each leaf of the assembly tree must

consist of an individual part.

G2 Remove a key part.

Instead of disassembling the entire product, it is often desirable to quickly

remove a single, key part from an assembly without necessarily disassembling

the entire product. The motivation for this stems from issues of maintenance

and recycling. The classic maintenance example is to replace a spark plug

without taking the entire car apart. A classic recycling example is to strip

down old computers for valuable parts while throwing out the rest.

For this variant, we assume that we are given a product as well as the label

for one key part that is to be removed. In the resulting assembly tree, the

key part must be isolated at a leaf, however other leaves may represent many

parts, since there is no need to further decompose subassemblies that do not

contain the desired part.

G3 Remove a given set of parts.

Rather than removing a single part, we may be asked to remove an arbitrary

subset of parts. In this variant, each of the requested parts must be isolated at

a leaf of the assembly tree. When only one part is requested, this is identical

to goal G2, and if the entire set is requested, this is identical to goal G1.

G4 Separate a given pair.

Given a key pair of parts, the goal in this variant is to decompose the fully

assembled product until the two parts lie in di�erent subassemblies. This

task is motivated by products for which it is important to identify the �rst

operation that requires both of the key parts to be brought together. This may

be important in situations where the two parts are manufactured at di�erent

locations, or for sensitive materials that need to be treated specially when

they are brought together.

For this variant, the two key parts must be located in di�erent leaves in the

resulting assembly tree. Note that the two key parts need not be completely

isolated at their leaves, they must simply be separated into components that

do not include the other key part.

G5 Separate a given set.

Rather than a pair of parts, a set of parts is given here and the goal is to
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decompose the assembly so that no two of the key parts are in the same

subassembly. When the key set consists of two parts, this is exactly goal G4,

and when the set consists of all parts, this is identical to goal G1.

4.2. Possible Restrictions

Manufacturing systems often impose additional constraints on assembly se-

quences other than simply geometric feasibility. We consider two such restricted

versions of the assembly sequencing problem.

R1 Linear Sequence.62;70

A linear assembly sequence is one in which each operation brings together a

single part with an existing subassembly. Such sequences are reminiscent of

a classical assembly line, in which each station is responsible for adding one

part. Although not all products can be assembled linearly, such sequences

are used in manufacturing for several reasons. The organizational level of a

linear assembly line is much simpler than for a sequence that requires building

many subassemblies in parallel. Also, the fact that one of the subassemblies

is a single part greatly reduces the �xturing costs.

Therefore, we consider the additional problem of choosing the best such se-

quence for a product, when restricted to linear assembly sequences. Note that,

even when restricted to linear sequences, there still may be exponentially many

valid sequences for a given product.

R2 Constant Size Family of Motions.1

Manufacturing systems may sometimes be constrained to use only a small

set of pre-de�ned motions, due to the existing robotics systems, or other

considerations such as �xturing and stability. For instance, a system may

be constrained to using only axis-aligned translations. When constrained to a

small number of motions, it may be possible that there exist better sequencing

algorithms than for the more general problem.

Therefore we consider the restricted problem for which the number of input

graphs in F is bounded by some constant, k.

4.3. Possible Complexity Measures

How do we decide which of two assembly sequences is the better one for a given

product? Of course, every person asked might give a di�erent de�nition of which is

better for that application. Furthermore, the truest measure of cost-e�ciency may

be a combination of many di�erent factors. We begin the study of cost measures for

assembly sequencing by introducing a collection of primitive complexity measures,

motivated by speci�c aspects of industrial applications. Our view is that success

with these basic measures is a necessary �rst step before examining specialized

combinations of complexity measures.
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C1 Fewest Number of Directions.62;70;72

The cost of an assembly sequence is equal to the number of directions of F that

are used. Once a direction has been used, future uses of the same direction are

free of charge. The motivation here is that in manufacturing, each direction

requires a di�erent type of movement for a robot, and it is more e�cient to

have robots that have as few degrees of freedom as possible. Note that this

di�ers from restriction R2, in that we are not told which directions to use in

restricting our search.

C2 Fewest Re-orientations.44;51;72

The cost of an assembly sequence is equal to the number of operations that use

a direction that is di�erent from the previous operation (we will also charge

the very �rst operation). In many manufacturing situations, the main cost of

a robot is in orienting it to perform a type of motion, yet once it is oriented,

it is fairly inexpensive to perform several motions of that type. Similarly, in

some manufacturing systems all parts must be physically inserted from above

and thus an operation in a di�erent direction is performed by re-orienting the

subassembly on the assembly line so that the desired direction is aligned ver-

tically. This is typically slow and might require additional expensive �xtures.

In both of these cases, using an orientation that was encountered earlier in

the process o�ers no savings unless the product is still in that orientation.

C3 Fewest Number of Non-Linear Steps.70

An operation is linear if one of the two subassemblies is a single part. The

cost of an assembly sequence is equal to the number of non-linear operations.

The motivations for this measure are similar to those for the R1 restriction,

however rather than absolutely requiring that all steps are linear, we simply

attempt to minimize the use of non-linear operations.

C4 Fewest Number of Steps.73

The cost of an assembly sequence is equal to the total number of operations

used. Notice that for goal G1, full disassembly, every possible two-handed

assembly sequence will require exactly (n � 1) steps. Therefore, this cost

measure is only meaningful for the partial disassembly problems.

C5 Minimum Depth of an Assembly Sequence.70

The cost of an assembly sequence is equal to the depth of the corresponding

tree. The motivation here is that in many assembly environments, paral-

lelism in production is helpful, and the minimum depth tree has the quickest

throughput, in a sense. As a special case, when the goal is to either remove a

key part or separate a key pair, then this cost is exactly equal to the number

of steps taken, and thus equivalent to C4.

4.4. Immediate Observations

At this point, we consider variants of vas which can be solved through fairly

immediate observations from the de�nitions in this section. The �rst several of these
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observations explain the success of the ndbg framework for solving the decision

problem of �nding feasible assembly sequences. We review these results, however we

use the terminology of vas in order to acclimate the reader. The latter observations

describe some variants that o�er immediate polynomial-time algorithms for exact

or approximate minimum cost measures.

Observation 1 A graph admits a legal operation on a subassembly if and only

if there exists a directed cut on the node-induced subgraph for the parts in that

subassembly. The existence of a directed cut is equivalent to the fact that the

subgraph is not strongly connected. This condition can be checked for each graph

in polynomial time.

Observation 2 The removal of parts can never invalidate an action. That is, if an

action using direction d is legal on the current subassembly, then the correspond-

ing action will still be legal on the induced graph remaining after any number of

intermediate actions take place.

The proof of this property is evident from the de�nition of directed cuts. If there

are no edges going from some set S1 to a set S2, then removing nodes will certainly

not invalidate the cut.

Observation 3 In polynomial time, we can check whether the set of graphs admits

a feasible sequence for any of our goals. We are able to �nd a legal operation, if one

exists, which decomposes our problem into two subassemblies, and then recurse. No

operation is a mistake in terms of feasibility due to Observation 2. If we ever reach

a subassembly for which there is no legal operation, we are assured that those parts

could not have been separated by any sequence.

Observation 4 A graph admits a valid linear operation to remove part p, if and

only if part p has no outgoing (incoming) edges. This can be checked in polynomial

time.

Observation 5 In polynomial time, we may check whether a set of graphs admits

a feasible linear sequence (R1) for any of our goals. This is a result of Observa-

tions 4 and 2.

Observation 6 For all of our variants, we can approximate the minimum cost solu-

tion within a factor of (n�1) in polynomial time. For approximating the minimum

depth for full disassembly, it is possible to achieve an n�1
dlog2 ne

approximation.

This is a trivial result of two facts. The �rst of which is that we are always able

to determine some feasible solution in polynomial time, if it exists. The second fact

is that for all of our cost measures, the best possible sequence has cost at least 1,

and the worst possible solution has cost at most n�1. When minimizing the depth

for full disassembly, the worst possible cost is still n � 1, however the minimum

possible depth for any full tree must be at least dlog2 ne.
Observation 7 A stack assembly is de�ned as a product that can be completely

(dis)assembled using translations along a single direction.70 A product admits a

stack assembly sequence, if and only if one of the blocking graphs is acyclic, and

that this can be checked in polynomial time.
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Observation 8 When the family of graphs has constant size, we can �nd the min-

imum number of directions required for any of the �ve goals in polynomial time

(R2/C1). This is true with or without the linear restriction.

The proof of this relies on the fact that with a constant number of graphs,

there are a constant number of possible subsets of directions. We may simply try

each possible subset and check the feasibility of the problem with those graphs.

Each such feasibility check can be done in polynomial time due to Observation 3 or

Observation 5.

Observation 9 For any of the �ve goals, when minimizing the number of re-

orientations when restricted to a constant number of graphs (R2/C2), we are able

to �nd the optimal solution in polynomial time when jFj = 2, and we are able to

�nd an (jFj � 1)-approximation in polynomial time, when jFj � 3. This is true

with or without the restriction to linear operations.

These results can be achieved using a set of universal sequences, similar to

the techniques used for approximating the Shortest Common Supersequence

problem.7 For more discussion on the relation between re-orientations and superse-

quences, see the proofs of Theorems 14 and 16.

Observation 10 For the goals G2 and G4, there exists a polynomial-time approx-

imation algorithm, which achieves a factor of 2(jFj� 1) for minimizing the number

of steps (cost C4).

This proof relies on the result of Observation 9, combined with a construction

which translates between counting re-orientations versus counting steps with a fac-

tor of two increase.

5. and/or Scheduling

As a special case, we consider the goal of removing a key part, when restricted to

linear steps, while minimizing the number of steps (G2/R1/C4). In this situation,

we can view the vas problem in a more simple manner by modeling it as a scheduling

problem. We consider the removal of each part as a task which can be scheduled,

and the linear disassembly sequence is simply a schedule for the order of removal.

The goal of the scheduling problem is to successfully schedule a key task and the

cost is equal to the total number of scheduled taskse.

Of course, our tasks have certain precedence constraints relating their order of

removal. That is, it may be the case that a certain part cannot be removed until

after some other parts are removed. What distinguishes this problem from more

traditional scheduling is the form of the precedence constraints. Commonly, a task

t may have what we term an and-precedence constraint, in that it has an associated

set of tasks all of which must be scheduled before t; see Ref. [22]. Unfortunately

this is not the case in our assembly sequencing problem. When considering a single

direction, if a part is to be removed then indeed there is a clear set of associated

parts that block the removal, and thus all of these parts must be removed prior

to removing our part in that direction. However, we may choose to remove that

eWe could also consider the problem of removing a set of parts in this way (G3/R1/C4).
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same part in some other direction, in which case a di�erent set of parts may block

the removal. It is worth noting that with classical and precedence constraints,

this problem of minimizing the number of scheduled tasks can be solved exactly, in

polynomial time by computing a depth order.

We consider other models for the structure of the precedence constraints. The

blocking relationships for linear disassembly sequences can be modeled directly using

what one may choose to call dnf scheduling, where the precedence constraint for

the removal of a part consists of a disjunction, with one disjunct for each distinct

direction of removal, and where each disjunct is a conjunction of the parts that

block the removal in the given direction. For example, it may be that the removal

of some part F may have a precedence constraint of the form (A^B)_ (A^C ^D).

We will choose, however, to examine a more speci�c model, namely that of

and/or precedence constraints. In this model, the precedence constraints for a

given task must either be a disjunction or a conjunction. Notice that and/or

scheduling is simply a special case of dnf scheduling. We choose to consider the

and/or scheduling problem for several reasons, most notably because we will use

this problem as the base of a reduction to prove hardness of a geometric setting in

Section 9.3. Theorem 7, in Section 8, will speci�cally address the issues of modeling

vas using and/or precedence constraints (as opposed to dnf constraints).

We formally de�ne scheduling with and/or precedence constraints, as follows,

for an instance with a set of tasks, T . Each task, ti 2 T , is labeled as either an

and-task or an or-task. Each task, ti 2 T , has an associated set of tasks, Pi,

as direct predecessors; we refer to jPij as the degree of the task. An and-task, ti,

can only be scheduled after all tasks in Pi. An or-task, tj , can only be scheduled

after at least one task of Pj . The max and-degree of an instance is the maximum

size jPij over all and-tasks ti. The max or-degree of an instance is the maximum

size jPj j over all or-tasks tj . The constraints can be represented by a precedence

graphf, with a node for each task, ti, and a directed edgeg from ti to tj whenever

tj 2 Pi, is a direct predecessor of ti A leaf-task is one with Pi = ;, and thus no

outgoing edges. Such a task can be scheduled at any time. We say that an instance

of and/or scheduling has partial-order precedence constraints if there are no cycles

in the precedence graph. We say an instance of and/or scheduling has internal-tree

precedence constraints if there are no cycles, and if all non-leaf nodes have at most

one incoming edge.

A similar model for scheduling with and/or precedence constraints has been

studied earlier by Gillies and Liu.23;24 However, they only consider the case we de�ne

as partial-order precedence constraints. With classical and precedence constraints,

it is assumed that there is no cycle in the precedence graph, as a cycle would make

the problem infeasible. With and/or constraints, this is no longer a necessary

condition for the existence of a valid solution, and in fact cycles will often exist as

it may be the case that part A blocks B in one direction, B blocks C in another,

fNot to be confused with the original blocking graphs.
gWe choose, in this situation, to direct an edge from ti to tj , to be consistent with the notion of

edges in a directed blocking graph. Often the meaning of the directed edge is reversed in scheduling
literature.
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and C blocks A in a third. For this reason, we have made no a priori assumptions

about the structure of the precedence relations. The work of Refs. [23,24] studies

a larger variety of settings, including multiple processors, deadlines, and individ-

ual processing times. They prove the NP-hardness of �nding feasible schedules in

many settings that are polynomially solvable with more traditional and-precedence

constraints, however they do not consider the approximability of the corresponding

optimization problems for a single processor. In their terminology, our setting is

equivalent to minimizing the completion time of an and/or/skipped task system,

with one processor, and unit processing times.

6. Reductions Between Variants of vas

In this section, we examine the relationships between many of the possible goals,

restrictions, and cost measures given in Section 4. We give several approximation

preserving reductions which demonstrate that certain variants are at least as hard

to approximate as others. A summary of the reductions is given in Figure 3, al-

though without noting the applicable cost measures. The proofs are given later

in this section. Because of the su�ciently strong lower bounds we will prove in

Sections 7 and 8, we allow our reductions to have an additive error in the approx-

imation factor, and where noted, we will allow a polynomial blowup of the input

size. For a review of the reduction de�nitions, see Section 2.

poly

Remove Set Separate Set

Full Disassembly

Remove Part Separate Pair

And/Or SchedulingRemove Part
Linear

(G3) (G5)

(G2) (G4)

(G1)

(G2,R1,C4)

poly

Fig. 3. Reductions between variants of vas
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Theorem 1 [G2 =) G4] (optionally C1, C2, C3, C4, C5, R1, R2, R1R2)

For all �ve cost measures, the problem of removing a key part from the rest of the

assembly can be reduced to the problem of separating a key pair of parts from each

other. This reduction also holds when restricted to linear steps, to a constant size

family, or to both.

Theorem 2 [G4 =) G2] (optionally C1, C2, C3, C4, C5, R1, R2, R1R2)

For all �ve cost measures, the problem of separating a key pair of parts from each

other can be reduced to the problem of removing a key part from the rest of the

assembly. This reduction also holds when restricted to linear steps, to a constant

size family, or to both.

Theorem 3 [G2 =) G1] (optionally C1, C2, C3, R1, R2, R1R2)

For minimizing the number of directions, re-orientations, or non-linear steps, the

problem of removing a key part can be reduced to the problem of fully disassembling

a product. This reduction also holds when restricted to linear steps, to a constant

size family, or to both.

Theorem 4 [G2/R1/C4
poly

=) G2] (optionally C1, C2, C4, C5, R1)

Minimizing the number of steps for removing a key part when restricted to linear

moves can be reduced, with polynomial blowup, to minimizing either the number of

directions, number of re-orientations, depth, or number of steps for the problem of

removing a key part, with or without a restriction to linear steps.

Theorem 5 [G2/R1/C5
poly

=) G1/C5]

Minimizing the number of steps for removing a key part when restricted to linear

moves can be reduced, with polynomial blowup, to minimizing the depth for full

disassembly without the linear restriction.

Theorem 6 [and/or =) G2/R1/C4] (optionally R2)

An instance of the and/or scheduling problem can be written directly as a special

case of the problem of minimizing the number of steps while removing a key part

when restricted to linear moves. The number of graphs is exactly equal to the max

or-degree of the scheduling problem.

Theorem 7 [G2/R1/C4
poly

=) and/or]

Minimizing the number of steps while removing a key part, when restricted to linear

moves, can be reduced with a polynomial blowup to the problem of and/or schedul-

ing. The number of tasks in the scheduling problem is bounded by (n + 1)jFj, and
the max or-degree is equal to jFj.
Theorem 8 [C4 =) C3] (optionally G2, G3, G4, G5, R1, R2, R1R2)

Minimizing the total number of steps can be reduced to minimizing the number of

non-linear steps. This is true for all applicable cost measures and all restrictions.

Theorem 9 [G2 =) G3, G1 =) G3]

The problem of removing a single key part reduces to the problem of removing a set of

parts. Similarly, the problem of full disassembling a product reduces to the problem

of removing a set of parts. This is true for all cost measures and all restrictions.

Theorem 10 [G4 =) G5, G1 =) G5]

The problem of separating a pair of parts reduces to the problem of separating a
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set of parts from each other. Similarly, the problem of full disassembling a product

reduces to the problem of separating a set of parts from each other. This is true for

all cost measures and all restrictions.

Proof of Theorem 1. The intuition for this reduction is simple. We take

an instance of the problem of removing a key part k, and construct an instance of

the problem of separating two parts by introducing a part k0 which is \glued" to k

unless all other parts are separated from k.

To implement this idea, we modify each graph in F by introducing part k0 and

adding edges (k; k0) and (k0; k). Therefore, no legal operation using one of these

graphs can separate k and k0 into di�erent subassemblies. Finally, we add one new

graph which is the complete graph with the two edges (k; k0) and (k0; k) removed.

If k and k0 are the only parts in a subassembly, then this new graph will allow for

their separation, however, it is useless for any other operations.

If we are not restricted to linear moves, we claim that there is a one-to-one

correspondence between solutions of the two instances. Any solution for removing

part k in the original problem, can be mimicked in the new problem to separate k

and k0 from the rest of the assembly, and then one �nal operation using the extra

graph can separate k and k0. Similarly, any solution to separate k from k0 must end

with such a move, and thus the rest of the sequence can be mimicked for the �rst

problem. The input size for the reduction is increased by one part and one graph,

and for all cost measures, the costs of the corresponding solutions di�er by at most

an additive error of one.

If we are restricted to using linear steps, however, there is a technical di�culty.

In the original problem, the very last step in isolating part k will always be a linear

step in which one of the subassemblies is the single part k. By the construction given

above, k0 would be glued to k, and we would replace the removal of k by the removal

of the two-part subassembly, k and k0. Therefore, in this case we alter our reduction

as follows. We replace each of the original graphs by two new graphs on (n + 1)

nodes. The �rst is exactly the same as the original reduction, where we add edges

(k; k0) and (k0; k). In the second new graph, we add all edges (a; b) for a 6= k 6= b,

thereby creating a clique on the n nodes other than k, along with the original edges

that connected k to other nodes. We claim that this graph will allow part k to be

removed by a linear step, exactly when part k could have been removed by a linear

step in the original graph, and that no other legal steps will exist. The only possible

directed cut on this graph would be between k and the rest of a subassembly, and

we claim this happens only if all of the outgoing (incoming) neighbors for part k

are gone. This is exactly the case in which k could have originally been removed

with a linear step, and this results in the separations of k from k0.

For this new reduction, the input size has again increased by one part, and the

number of graphs has doubled. Again, we claim that for all cost measures and

combinations of restrictions, the costs of corresponding solutions for the original

and new problems di�er by at most an additive error of one. This completes the

reduction. 2

Proof of Theorem 2. We take an instance of the problem of separating parts
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k1 and k2, and we construct an instance of simply removing part k1. We will create

a new graph which allows k1 to be separated from everything, so long as it had

previously been separated from k2.

In this reduction, we take each graph in F without modi�cation, and we create

one new graph with edges (k1; k2) and (k2; k1) along with edges (k1; a) and (a; k2)

for all other parts a. This graph is shown in Figure 4. It is easy to verify that if

k1 rest k 2

Fig. 4. Separating a pair reduces to removing a part

both k1 and k2 are in a subassembly, then this graph is strongly connected and so

no legal operations can be done. However, if k1 has been previously separated from

k2, than this graph will allow k1 to be separated from everything else in a single,

linear step. Any solution to one of these problems can be translated into a solution

to the other with error of at most one for any of the cost measures, and the input

has increased by one graph. 2

Proof of Theorem 3. We give a very simple modi�cation to translate an

instance of the problem of removing a key part k, into an instance of fully disassem-

bling a product. For this reduction, we simply create one additional graph which

allows the entire product to fall apart if the key part is missing.

Speci�cally, we take each graph in F without modi�cation, and insert one new

graph with edges (k; a) and (a; k) for all parts a 6= k. For all subassemblies not

containing k, this graph will allow complete disassembly with additional cost one,

in terms of the number of directions, number of re-orientations or number of non-

linear stepsh. Furthermore, this graph is strongly connected, and hence of no use,

for any subassembly which contains k.

This gives us an approximation-preserving reduction for these cost measures.

Clearly, any solution to the new full disassembly instance can be translated to a

solution to the original key part problem with at least as low of a cost. Furthermore,

the optimal solution for the full disassembly problem has cost at most one more than

the optimal solution for removing the key part, namely using the new graph to �nish

the disassembly with additive cost one. 2

Proof of Theorem 4. Assume we are given an instance of minimizing the

number of steps for removing a key part when restricted to linear operations. We

construct a new instance of removing a key part, where we no longer explicitly

require the restriction to linear operations. We will implicitly enforce the linearity

hNotice that for Cost C5, there may be a logarithmic increase in the depth. This problem is
handled separately in Theorem 5.
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by converting each graph into n graphs, each of which only allows for the removal

of a speci�c part.

We keep the same set of n parts, and we create a new family of njFj graphs.
For each pair hp; di, with part p 2 P and direction d 2 F , we create a new graph

which is a clique on the n� 1 parts (P � fpg), and which has edges (p; a) or (a; p)

for each part a whenever the respective edge exists in d. This graph is identical to

the graph we introduced in the second part of the proof of Theorem 1. We claim

that the only possible action allowed by this graph is to remove the single part p

from a subassembly, and that this one action is possible if and only if there is a

linear operation which removes part p from the same subassembly using direction

d. That is, the set of outgoing (incoming) edges of d must be broken in order to

remove p in our new graph.

With this claim, we immediately get our result, as there is a one-to-one cor-

respondence between solutions of the original problem and solutions of the new

problem with identical costs. Every linear move in the original problem has a

unique graph in the new problem that allows the identical part to be removed, and

vice versa. Therefore, the number of steps in a solution to the original problem is

exactly equal to the number of steps in a solution to the new problem. Furthermore,

since each graph is useful for at most one linear move in our new instance, then

the number of steps in the original solution is also equal to the number of steps,

number of directions, or number of re-orientations used in the new instance.

Since all valid moves in our new instance happen to be linear, it makes no

di�erence in the result whether the new instance is restricted to linear moves or

not. Note that because our construction increased the number of graphs by a factor

of n, we cannot make any such claim for problems with restricted to a constant size

family of graphs (R2). 2

Proof of Theorem 5. The proof of this theorem is a simple combination of

the techniques from the proofs of Theorems 3 and 4. In the proof of Theorem 3,

we reduced the problem of removing a part to the full disassembly problem, by

adding in one additional graph which was a star on the key part. In this way,

once the key part is removed, this new graph can be used to complete the rest of

the disassembly. The problem when considering the minimum depth cost measure

was that the completion may still require an additional logarithmic increase in the

depth.

We will remedy this by arti�cially increasing the cost of the original moves, so

as to make this �nal logarithmic additive cost inconsequential. To do so, we must

go back and reconsider the problem of removing a key part while restricted to linear

operations, and so we assume we are given such an instance. We construct a new

instance of minimizing the depth for full disassembly as follows.

We start by replacing every part a with n new parts f a1; : : : an g. In each graph,
for any original edge (a; b), we introduce all possible edges (ai; bj). Additionally,

we introduce all edges (aj ; ai) such that i < j. If we are still restricted to linear

moves, this has the e�ect that a2 cannot possibly be removed until after a1, and so

on. However, if it was originally the case for a subassembly that part a would be
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immediately removable, in this current instance, it would be the case that a1 could

be immediately removed, followed in turn by a2 and similarly the entire sequence

of a's. Therefore, the overall e�ect of this replacement is simply to increase the cost

of each original linear operation from 1 step to a sequence of depth n.

At this point, we continue in our construction as we did in Theorem 4, by

relaxing the restriction to linear steps while arti�cially assuring that no non-linear

steps will be possible. This results in an instance of the general problem of removing

a key part, where the cost of our steps is still arti�cially replaced by a sequence of

depth n. Now we can again add in one �nal new graph which is a star graph on part

kn, where k was the original key part for removing. Therefore, once kn has been

removed, this new graph allows for the complete disassembly of the remaining parts

in depth logarithmic in the total number of parts. Our total number of parts has

become n2, and so the additive cost on the depth for this �nal group of steps is at

most logn2 = 2 logn. However, all of our steps for the original problem have been

replaced by a sequence of n steps, making the e�ect of this �nal step insigni�cant,

and thus we have an approximation preserving approximation, with a polynomial

blowup in the size of the problem. 2

Proof of Theorem 6. Given an instance of and/or scheduling, we realize it

as an instance of removing a given part, restricted to linear moves, while minimizing

the number of steps. We create one part for each task in the scheduling problem.

The number of graphs in our family of motions is exactly equal to the max or-degree

of the scheduling problem. By default, each of the graphs is complete, however we

will delete the following edges. For an and-task, ti, we will modify the �rst graph

by deleting edges (ti; a) for all a 62 Pi. In this way, part ti can be removed using

this graph, if and only if all of its corresponding predecessors have been previously

removed. For an or-task, tj , with degree �, we will modify the �rst � graphs as

follows. For each a 2 Pj , we will modify one of the graphs by deleting edges (tj ; b)

for all b 6= a. In this way, part tj can be removed using this graph so long as part a

is priorly removed. Therefore, if any one of the predecessors has been removed,

then there will be some graph which allows for the removal of tj with a linear move.

This vas instance is exactly the original and/or scheduling instance, where the

number of (linear) steps required is equal to the number of scheduled tasks. 2

Proof of Theorem 7. Given an instance of removing a key part with linear

steps, we create an instance of and/or scheduling as follows. Our intuition is

to equate the removal of a part with the scheduling of two tasks, namely one task

which says \I am prepared to remove part p in direction d" and a second task which

says \part p has been removed." We implement this as follows. For each part p we

create task tp which we equate with the statement, \part p has been removed." For

each pair hp; di, with part p 2 P and direction d 2 F , we create task t̂(p;d), which

we equate with the statement \I am prepared to remove part p in direction d." We

make t̂(p;d) an and-task with task ta in its predecessor set for every outgoingi edge

iActually, this only accounts for the possibility of removing part p away from the rest of the
subassembly in this direction. As we can consider the \reverse" operation of removing the rest of
the subassembly away from p, we should really construct two parts for each such pair, where the
second checks for all incoming edges.
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(p; a) 2 d (we must have already removed all parts blocking p in direction d). We

make task tp an or-task with task t̂(p;d) in its predecessor set for each direction d

(we must have at least one direction which allows for the removal).

For this construction, any solution to the scheduling problem can be trans-

lated to a solution of the vas problem with the number of removed parts at most

half of the number of scheduled tasks. Similarly every solution to the vas prob-

lem can be translated directly to a solution to the scheduling problem with the

number of scheduled tasks exactly twice the number of removed parts. Therefore,

our absolute approximation ratio is preserved. However, our construction requires

a polynomial blowup in the problem size, therefore what we have shown is that

an f(n)-approximation algorithm for and/or scheduling gives us an f(poly(n))-

approximation algorithm for this vas variant. 2

Proof of Theorem 8. Given an instance of vas where the goal is to minimize

the total number of steps, we wish to transform this instance into a new problem

where we charge for the number of non-linear steps. The only di�erence between

these cost measures for a solution is that in one of them, linear steps may be done

for free. Our solution for this reduction is quite simple. If we turn every part into

two parts which are glued together, then an original linear step is no longer linear,

and thus will be charged accordingly. We omit the details of this construction. 2

Proof of Theorem 9. Both of these problems are simply special cases of

removing a set of parts, as mentioned in Section 4.1. 2

Proof of Theorem 10. Both of these problems are simply special cases of

separating a set of parts from each other, as mentioned in Section 4.1. 2

7. Inapproximability of and/or Scheduling

In this section, we prove the inapproximability of minimizing the number of tasks

schedule for an instance of scheduling with and/or precedence constraints, as de-

�ned in Section 5. As a precursor, we prove the inapproximability of minimizing the

number of leaves scheduled in an instance of and/or scheduling with internal-tree

precedence constraintsj. We prove this result by showing that the Label Covermin

problem is a special case. We then convert this result to prove a similar bound when

we further restrict the and/or problem to have degree bounded by two. Following

this, we convert our bound on minimizing the number of schedule leaves into a

bound on the total number of scheduled nodes for the general and/or scheduling

problem. An overview of the reductions is given in Figure 5.

Theorem 11 It is quasi-NP-hard to approximate the number of leaves scheduled

in an instance of and/or scheduling with internal-tree precedence constraints, to

within a factor of 2log
1�
 n for any 
 > 0. This remains true even if both the

jThe internal-tree de�nes a monotone, boolean function on the leaf nodes, in which setting a
leaf's variable to \one" signi�es that the leaf will be scheduled. Minimizing the number of scheduled
leaves is equivalent to satisfying a monotone boolean formula with the minimum number of ones.
Therefore, our results also prove the inapproximability of this problem on monotone boolean
formulae. We are unaware of any previous results for this approximation problem. Minimizing the
number of ones in satisfying a 3CNF formula is known to be n0:5��-hard to approximate,42 and
related minimization problems are studied in Ref. [48].
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And/Or Scheduling

And/Or Scheduling
max-Degree = 2

And/Or Scheduling

Label Cover

Internal-treeInternal-tree
max-Degree = 2

(polynomial blowup)

(polynomial blowup)(polynomial blowup)

And/Or Scheduling

Fig. 5. Reductions between variants of and/or scheduling

and-degree and or-degree are bounded by two.

Theorem 12 For the problem of minimizing the number of tasks scheduled in a

general instance of and/or scheduling, it is quasi-NP-hard to achieve an approxi-

mation ratio of 2log
1�
 n for any 
 > 0. This lower bound remains valid if both the

and-degree and or-degree are bounded by two.

Proof of Theorem 11. Given an instance of Label Covermin, as de�ned

in Section 2, we express it as an instance of and/or scheduling with internal-tree

precedence constraints, as shown in Figure 6.

AND

OR OR OR

ANDAND

OROROR

AND

OR

<b,1> <b,2> <b,3><a,1> <a,2> <a,3>

For each node of V,

For each incoming edge,

Choose a preimage which

assign labels to U

Choose a label.

maps to the label.

Fig. 6. Label Cover as and/or scheduling with internal-tree precedence

The and/or instance has �ve levels, which alternate between and-nodes and

or-nodes. The highest level contains solely the root of the internal-tree, and the

lowest level contains exactly the leaves. The tasks at the �ve levels are as follows:
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� The �rst level has a single and-node, which is the root of the internal-tree.

This task enforces that every node in V must have a non-empty set of labels.

� The second level has an or-node for each vertex in V . This nodes requires

that for a given node v to have a non-empty label set, at least one label must

be assigned to it.

� The third level has an and-node for each pair hv; li, where v 2 V , and l 2
f1; : : : ; Ng. This node signi�es that for label l to be assigned to vertex v, it

must be the case that for each edge e = (u; v) incident to v, the mapping �e

on that edge, must respect the labeling.

� The fourth level has an or-node for each pair he; li, where e = (u; v) is an

edge, and l is a label. If l is to be assigned to v, then edge e can only be

covered if one of the pre-images of l from mapping �e is assigned to u.

� The �fth level has a leaf for each pair hu; li, and corresponds to label l being

assigned to vertex u.

For the case of unbounded degree, this completes the construction. It can

be seen that there is a one-to-one correspondence between valid labelings in the

Label Covermin instance and valid solutions to the and/or scheduling instance,

where the number of labels used is exactly equal to the number of leaves sched-

uled. It is easy to verify that the and/or instance has internal-tree precedence

constraints. Notice that the number of non-leaf tasks in this construction is poly-

nomially bounded in the size of the Label Covermin instance (namely, in jU j,
jV j and N), and thus we have given an approximation-preserving reduction with

polynomial blowup. Combining this with a previous4 lower bound for the approx-

imability of Label Cover,, we get that it is quasi-NP-hard to achieve an 2log
1�
 n

approximation for any 
 > 0.

To prove the bound with the maximum degree equal to two, we can replace each

internal node in the obvious way, with a tree of bounded degree nodes. Assume

there were originally I internal nodes and L leaves, and that I is polynomially

bounded in L. The maximum degree for any node is at most (I + L), and thus

that node must be replaced by a tree of at most (I + L) nodes, each with degree

two. Notice that the cost of the solutions has remained unchanged, as we are only

charged for the number of leaves that are scheduled. The new instance has I(I+L)

internal nodes, which is still polynomially bounded in L, and thus our reduction

runs in polynomial time. 2

Proof of Theorem 12. The di�culty of attempting to minimize the number of

scheduled leaves using an algorithm that minimizes the number of scheduled nodes

is that the overhead of the internal nodes may have a signi�cant cost, changing

the quality of the approximation. This can be remedied quite easily, by arti�cially

increasing the cost of scheduling a leaf. Assume we have a hard instance of internal-

tree scheduling from Theorem 11, with I internal nodes and L leaves. We convert

this to a general instance of and/or scheduling by replacing each leaf with a chain

of �I new nodes, for some constant �. Notice that both the and-degree and the
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or-degree remain unchanged, although this new instance no longer has internal-tree

precedence constraints. This new instance has a total of I + �IL nodes. Relying

on the fact that I is polynomially bounded by L, we see that the new size is also

polynomially bounded by L.

With the appropriate choice of �, the additive error can be made arbitrarily

small, giving us an approximation-preserving reduction with polynomial blowup in

the input size 2

8. Inapproximability of Virtual Assembly Sequencing

We present our core results regarding the vas model in this section. We gave

reductions, in Section 6, which related various versions of vas to each other, in terms

of the level of their approximability. Now we will rely on the hardness of some other

problems to prove the di�culty of �nding optimal or even near-optimal solutions

for most variants of vas. Our �rst set of results will be a direct consequence of the

hardness of and/or scheduling shown in Section 7. Our second set of results will

show weaker inapproximability results for a case not covered by our other reductions,

namely when the family of motions is restricted to be of constant size. These results

come from a natural reduction from the Loading Time Scheduling Problem. As there

are numerous combinations of goals, restrictions, and cost measures, we present our

complete list of results for vas in Tables 2{4.

Theorem 13 It is quasi-NP-hard to achieve a 2log
1�
 n-approximation for any 
 >

0, for the problem of minimizing the number of steps while removing a key part when

restricted to linear operations (G2/R1/C4). This result applies even when jFj = 2

(G2/R1R2/C4).

Proof. This is a direct result of Theorem 12, combined with Theorem 6. 2

Corollary 1 It is quasi-NP-hard to achieve a 2log
1�
 n-approximation for any 
 >

0, for minimizing the cost of many other variants of vas. A summary of the results

are given in Tables 2{4.

Proof. These results are a combination of Theorem 13, together with the many

reductions given in Section 6. See Tables 2{4 for the full results. Each table entry

additionally refers to the relevant problem that is used to establish the lower bound

as well as the theorem containing that reduction. 2

Theorem 14 We consider minimizing the number of re-orientations, when the

family of motions is restricted to be of constant size, (R2/C2). For any of the

�ve goals, we prove the following two results, (i) for jFj = 3, this problem is NP-

complete; (ii) for jFj � 4, there exists an � > 0, such that achieving an jFj�-
approximation is NP-hard. Both of these facts hold with or without the linear re-

striction, R1. Furthermore these same lower bounds can be shown for minimizing

the number of steps (R2/C4) for all applicable goals.

Proof. We begin by proving this result for the goal of removing a key part from

the assembly. Our result is based on a reduction to a related problem, introduced as

the Loading Time Scheduling Problem7 (ltsp). In this scheduling model, certain

tasks must be completed on certain machines, however the dominant cost is not
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Table 2. Inapproximability of removing a key part
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Table 3. Inapproximability of separating two parts from each other
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Table 4. Inapproximability of complete disassembly
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actually the time required to run the tasks, rather the expensive context switches

in going from using one machine to another. This model relates quite naturally to

our original motivation for considering the re-orientation cost measure, namely that

orienting a robot to perform insertions in a given directions is quite expensive, but

once it is oriented, inserting several more parts in negligible.

The exact de�nition for ltsp is given as follows. There is a set of n jobs, and �

machines, and each job, j, can only be performed by some subset of the machines,

M(j). The jobs have (standard) precedence constraints, represented by a directed

acyclic graph G. Each machine mi has a loading time l(mi) which must be paid in

order to prepare a machine, however once that machine is loaded, it may perform

any available operations at no additional cost. The overall cost for a schedule is the

sum of the machine loading times.

We give a reduction from the ltsp problem when all loading times are equal to 1,

to the vas problem of removing a key part (with or without the linear restriction),

while minimizing the number of re-orientations. Given an instance of ltsp we

create an instance of vas with a part for each job in the ltsp instance, and one

additional part, key, whose removal will be our goal. For each machine m, we create

a graph Gm 2 F . The graph will be a superset of the precedence graph, G, given

in the ltsp instancek, augmented with the edge (key; i) for all jobs i, as well as the

edge (j; key) for any job, j, such that m 62 M(j). An example of such a graph is

given in Figure 7.

key

graph G
Fig. 7. Reduction from Loading Time Scheduling Problem

We begin by considering the problem when restricted to linear moves, and we

associated the removal of a part with the scheduling of a job in the ltsp instance.

We claim that our graph Gm allows for the immediate removal of part j by a linear

kactually, we reversal all edges of G, as Ref. [7] de�nes an edge from x to y as signifying that
y cannot be run until after x.
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step, if and only if job j can be immediately scheduled on machine m. Assume

that job j can currently be scheduled on machine m. In this case it must be that

m 2 M(j) and that all predecessors of j have already been scheduled. But in this

case we claim that vertex j has no outgoing edges in graph Gm, and thus can legally

be removed using that graph. Since m 2M(j), then vertex j does not have an edge

to key, and since all of the predecessors of job j have been previously scheduled,

then vertex j does not have any outgoing edges remaining from the original graph

G. Similarly, if job j cannot be immediately scheduled, then it must be either

because m 62 M(j) or else one of the predecessors of j has not yet been scheduled.

If m 62M(j), then both edges (key; j) and (j; key) exist and hence j and key cannot

be separated. Instead, if one of the predecessors of j, call it b, has not yet been

scheduled, then the edges (key; j), and (j; b) will exists, and thus node j has both an

incoming and outgoing edge, and thus cannot be removed with a linear operation.

For this reason, we claim that any solution to the ltsp instance can be translated

to a solution with equal cost for removing the key part, and vice versa, and thus

we have an approximation preserving reduction. At this point, we rely on results

shown in Ref. [7] combined with a result of Ref. [54], to prove our claims, where the

number of machines for ltsp corresponds to jFj.
Notice that this exact construction, proves the result for the full disassembly

problem, as our product will be fully disassembled exactly when all parts have been

removed from the key. For the problem of separating a pair, we can use a trick

similar to Theorem 1. This concludes the proof for all the cases when restricted

to linear moves. If we allow non-linear moves, this construction still holds for the

number of re-orientations. The fundamental observation is that if a single graph in

our construction allows for a set of parts to be removed through a sequence of linear

operations, then that graph also allows for the removal of all of those parts at once

in a single operation. When considering the number of steps, we note that all of

the progress of each re-orientation can be made using a single step. In this way, we

get similar lower bounds for variant R2/C4, when applied to all goals except full

disassembly. 2

9. Geometric Lower Bounds

While the inapproximability results of Section 8 give strong evidence that mini-

mizing the cost of assembly sequences is quite di�cult, it does not prove so conclu-

sively. The reductions which we gave in our general vas model do not automatically

apply to the original geometric assembly sequencing problems. This includes the

inapproximability proofs and similarly all of the reductions relating the hardness

of di�erent variants of our problem to each other. The reason these results do not

apply is that a hard instance of the general problem may not be realizable using

geometric input. It is possible that, by generalizing the original problem, we may

have made it much more di�cult.

For these reasons, we consider the di�culty of these same assembly sequencing

problems, in this chapter, when restricted to various geometric settings. We prove

lower bounds against the approximability of three di�erent complexity measures,
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using three di�erent geometric settings. We begin by studying the minimum num-

ber of directions needed for any of the �ve goals, in a setting of three-dimensional

polyhedral assemblies, when the allowable motions are either in�nitesimal or in�nite

translations. Secondly, we consider minimizing the number of re-orientations for any

of the �ve problem goals, when restricted to linear moves. We give a lower bound

construction using a two-dimensional polygonal assembly, showing the inapprox-

imability when restricted to removing one part at a time. Finally, for minimizing

the number of steps needed in removing a key part or separating a key pair, we give

our strongest inapproximability results. We prove a 2log
1�
 n lower bound for the

approximability, using an assembly consisting entirely of unit disks in the plane,

where disks are removed using translations to in�nity. This result, surprisingly,

matches our strongest known lower bounds for the identical problem variants in the

general vas framework.

We present the following three theorems, with the proofs to follow. The results

for all goals in a geometric setting are summarized in Table 5.

Theorem 15 We consider minimizing the number of directions used (C1), for a

polyhedral assembly in three-dimensions, restricted to either in�nitesimal or in�-

nite translations. In this setting, it is NP-hard to minimize the number of distinct

directions for any of the �ve goals. This is valid with or without the linear restric-

tion, R1.

Theorem 16 We consider minimizing the number of re-orientations used when

restricted to linear steps (R1/C2), for a polygonal assembly in two-dimensions,

using either in�nitesimal or in�nite translations. For all �ve goals, we prove, (i)

when jFj = 3, minimizing the number of re-orientations is NP-complete; (ii) when

jFj = 4, achieving a (1 + c)-approximation is NP-hard for some c > 0; (iii) in

general, achieving a log� n-approximation is quasi-NP-hard, for some � > 0.

Theorem 17 We consider an assembly consisting solely of disks of unit radius,

whose centers lie on a polynomial-sized grid in the plane. Our goal is to remove

a key disk, and we allow disks to be removed individual by translations to in�nity.

For this setting, it is quasi-NP-hard to approximate the minimum number of steps

within a factor of 2log
1�
 n for any 
 > 0. This bound also applies if we consider only

translations along the positive X-axis and Y -axis. Additionally, this construction

generalizes to axis-aligned unit squares, and to higher dimensions.

9.1. A Special Case of Set Cover

Consider the following scenario in three-dimensions. Imagine a large, 
at rect-

angle as the base of an assembly, with the remainder of the parts as polygonal

pegs which are embedded into the base. Each peg will naturally have some spe-

ci�c region of directions, by which it can be translated away from the base. An

example of a single such peg is shown in Figure 8, modi�ed from Ref. [62]. Now we

consider the minimum number of directions which must be used to remove all the

pegs from the base. As pointed out in Ref. [72], this instance looks very much like

a Set Cover problem, in that we must choose a minimum number of directions,
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Table 5. Inapproximability in geometric settings
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P

Part Geometry Translation Freedom for Peg

Fig. 8. A peg in a base

where each direction allows for the removal of some set of pegs. Unfortunately, it

does not seem possible to realize an arbitrary instance of Set Cover in this way,

so the lower bounds for Set Cover do not apply. Instead, we examine a special

case of Set Cover which we call Convex Polygon Cover, which we are able to

realize geometrically. We de�ne the Convex Polygon Cover problem as follows,

Input: A collection, R, of (possibly degenerate) convex polygons in the plane.

Output: A set of points P , such that every polygon of R contains at least one

point of P .
Cost: jPj, the number of points.

A similar, even more restricted problem, Rectangle Cover is de�ned in

Ref. [57], where all polygons are axis-aligned rectangles. It is not known whether

Rectangle Cover is NP-hard.

Lemma 1 The Convex Polygon Cover problem is NP-hard.

Proof. We will base this result on a reduction from the problem of Pla-

nar Vertex Cover, which is known to be NP-complete.22 Given an instance

of Planar Vertex Cover, we can simply let each edge of the graph be repre-

sented by a degenerate polygon, and we consider this input to the Convex Poly-

gon Cover problem. Without loss of generality, there is no need to pick any

point that is not at a vertex of the graph, in covering the polygons. Therefore,

there is a one-to-one correspondence between such solutions to the Convex Poly-

gon Cover instance and solution to the Planar Vertex Cover instance. This

completes the reduction, and thereby proves that Convex Polygon Cover is

NP-hard. 2

Lemma 2 We are able to realize any instance of Convex Polygon Cover using

a three-dimensional, polygonal assembly, where the goal is to remove a key part

using as few directions of translation as possible.

Proof. Given a set of polygons in the plane, we will consider the corresponding

homogeneous coordinates65 to project them onto the upper hemisphere. Given a

single such projection, we can design a peg which can be removed from the base

using exactly those directions represented by the polygon. We simply create a peg

which is embedded into the base, with the shape of the polyhedral cone de�ning the
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projected polygon (for example, if the polygon were a square centered around the

origin, our corresponding peg would be a four-sided pyramid embedded upside down

with its tip in the base). For degenerate polygons, we may use parallel planes with

an arbitrarily small separation to de�ne our pegs. Each peg can be made arbitrarily

small, and so we may lay out many such pegs in the base, far enough apart so that

they will not interfere with each other's removal. This completes the construction.

To remove any given peg, we must at some point use a direction of translation

which lies in the corresponding polygonal region. Therefore, any assembly sequence

which removes all the pegs will provide a solution to the Convex Polygon Cover

problem, where the number of directions used is equal to the cost of the solution.

2

Proof of Theorem 15. For the goal of removing a key part, this theorem is

a result of Lemmas 1 and 2. Using this exact construction, the product is fully

disassembled exactly when all pegs have been removed from the base, and so this

proves the hardness for goal G1. For the goal of separating two parts, we can

split the base into two pieces, cutting it parallel to its top surface, so that all the

pegs completely penetrate the �rst piece, and are embedded into the second. The

two parts of the base will be stuck to each other until all of the remaining pegs

share a common direction for removal, and hence separating the two key parts will

require the same number of directions as the original problem, proving the result

for goal G4. The goals G3 and G5, are generalization of the others, and thus the

hardness results also apply. 2

9.2. Finding a Common Supersequence

Proof of Theorem 16. When constrained to using linear moves, we give

a construction which reduces the problem of �nding a common supersequence,

to the problem of fully disassembling an assembly consisting of polygons in two-

dimensions. A string T is a supersequence of a string S, if S can be obtained by

erasing zero or more symbols of T . Given a �nite set of strings over alphabet �,

a common supersequence is a string T which is a supersequence for each string in

the set. Given a set of s strings, with combined length n, over an alphabet of size

j�j = k, we build the following instance of full disassembly. The base is a long,


at rectangle, and each sequence will be represented as a tower of blocks stacked

on the base, with the towers spaced su�ciently far away from each other. Each

block will represent a symbol in a string, and will be attached to the piece below

it with a small \peg" inserted so as to restrict the separation to a single direction

of motion. Each alphabet symbol will be assigned a unique angle of separation

for the associated pegs. All of the directions will be chosen to lie in a su�ciently

small cone so as to prevent the individual towers from interfering with each other.

An example is given in Figure 9, with two additional pieces added to the base, for

reasons described later.

If we assume that none of the input sequences contain consecutive occurrences

of the same character, then we claim that any solution for fully disassembling the

product provides us with a supersequence whose length is equal to the number of
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A

C

B

C

B

C

A

C

A

A

B

C

A

S = {ABAC, CACA, ACBCB}

Fig. 9. Example construction for SCS reduction

re-orientations, and vice versa. If the supersequence input does have consecutive

occurrences of the same character, we can remedy this by doubling the size of the

alphabet, replacing each occurrence of character a by the sequence a1a2.

The problem of �nding the shortest common supersequence is known to be NP-

hard,22 and more recently it was shown to be Max-SNP-hard, even over a binary

alphabet.8 Therefore, by doubling the alphabet as above, we get that our disas-

sembly problem is Max-SNP-hard when jFj � 4. When jFj is not restricted to

be constant, there exists a constant � > 0, such that approximating the shortest

common supersequence to within a factor of log�n is quasi-NP-hard.39 Finally, even

if strings have consecutive occurrences of the same symbol, �nding a common su-

persequence with the minimum number of runs is NP-complete for an alphabet size

j�j = 3.54 A run is de�ned as a group of consecutive occurrences of the same symbol,

and hence the number of runs is exactly equal to the number of re-orientation in our

problem. For this reason, minimizing the number of re-orientations is NP-complete

when jFj = 3. This proves our theorem for the full disassembly goal.

We can extend this construction to the case of removing a key part or separating

a key pair as follows. We introduce two extra parts, as shown in Figure 9, which

are interlocked, and which are attached to the bottom of the base with pegs which

span the range of angles used by the alphabet symbols. Because we are restricted

to using linear operations, if we now request for the base to be removed as the key

part, this will require exactly the same number of re-orientations as the original

construction. Furthermore, if we request the separation of the base from one of the

two new parts, this too requires the same number of re-orientations. In this way,

our reduction remains valid for all �ve of the possible goals. 2

9.3. The Disks Problem

Proof of Theorem 17. Our proof is based on a reduction, with polynomial

blowup, from and/or scheduling with internal-tree precedence constraints, and

with or-degree bounded by two. (We do not require such a bound on the and-

degree.) Given a hard instance from Theorem 11, we construct an instance of the

Disks problem. We assume, without loss of generality, that or-nodes rely only on
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internal nodes.

Our scene consists entirely of disks with radius one, whose centers lie on a

polynomially-sized, integer grid. We prove this result directly for the case where

only two directions of translations are allowed, namely North and East. We place

a wall of width 2W around the perimeter of our working area which we consider

immovable. We will place some holes in the wall, described later, which allow a

clear path out for some disks. We consider our main working area as two sections,

one for the mechanisms involving the interior nodes, and the second section for the

leaf node mechanisms. The overview of the construction is given in Figure 10.

Leaf Nodes

Internal Nodes

Fig. 10. Overview of Disks construction

First we describe the mechanism involving the internal nodes. Since the internal-

tree de�nes a partial order on these nodes, we can number the internal nodes,

T1; : : : ; TI so that if an internal node depends on another internal node, it will have

a higher index. For each internal node, Ti, we create a disk, Di, centered at (6i; 6i).

We de�ne the wall to the North by placing a column of W disks with x-coordinates

centered at 6i+ 2 for each disk Di, assuring us that the disk itself has an \escape

route" to the North. For the East wall, we place a row of disks centered at y-

coordinate 6i+2 in the case that disk Di is an or-disk, or else at 6i+1 in the case

that disk Di is an and-disk. In this way, we assure an additional escape passage to

the East for an or-disk, but not for an and-disk.

Next, we add in additional disks to enforce the precedence constraints. For and-

node, Ti, blocked by node Tk 2 Pi (and thus i < k), we add a disk Ak
i centered at

(6i+ 1; 6k � 1), which will be forced to the East by our previous placement of the

walls. For an or-node, Ti, which depends on 2 nodes, Tk and Tl, we create two new

disks, Ok
i located at (6i + 1; 6k � 1), which will be forced East by our walls, and

Ôl
i located at (6l � 1; 6i+ 1), which will be forced North. The entire internal node
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mechanisms are contained in a (6I + 1)� (6I + 1) square. See Figure 11.

2
A

1
3

A

D
1

1

D
3

D
2

AND-node 1, depends on (2,3)

O

1

3

O

D
1

2

1

D
2

D
3

OR-node 1, depends on (2,3)

Fig. 11. Internal node mechanisms

The section for the leaf mechanisms begins at height 6(I +1) so as to be higher

than the internal mechanisms. We can number the leaf nodes in any order, and we

create a separate mechanism for each leaf in a strip of height 2I . For a given leaf, La,

we create what we term a blockade, to the right of this strip. The blockade consists

�rst of a diagonal chain to the Northeast of height 2I , followed by a horizontal chain

of B disks to the East of the end of the �rst chain (where B is determined later).

The disk beginning the blockade is centered at (6(I + 1); 6(I +1) + 2Ia). The wall

to the East of the blockade is removed, allowing the disks of the blockade an escape.

For any disk located in the horizontal strip associated with La, escaping to the East

will require an additional cost of at least B to break through the blockade. However

this cost is only charged once per blockade, after which any disks in the horizontal

strip may escape. Now, for every internal node Ti which depends on leaf La, we

create a disk Li
a, located at (6i+1; 6(I+1)+2Ia+2i), which is forced East by the

walls. Figure 12 shows an example of a leaf mechanism.

B disks

L 1
a

L

L 3
a

a
2

Fig. 12. Leaf node mechanism: Internal nodes 1; 2; 3 depend on Leaf a.

To complete the construction, we set the blockade value, B = 4I(L+ I), to be

greater than the total number of disks in the remainder of the internal and leaf

mechanisms combined. In this way, the number of blockades removed dominates

any additive costs in the rest of the construction. Finally, we assign W = B(L+1),

so that the cost of removing all non-wall disks is less than the cost of digging a

single new hole through any part of the wall. For this reason, we may assume

without loss of generality that any solution to this Disks instance has cost at most

W . Finally, we note that the wall has perimeter which is O(BL), and hence the

total number of disks in our construction is polynomially bounded. An example of
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the �nal construction is given in Figure 13.

Fig. 13. A complete Disks construction

It is not hard to verify that for this Disks instance, a solution for removing the

root disk with cost at most kB can be translated to an and/or solution of cost

at most k. Similarly, an and/or solution of cost k can be translated to a Disks

solution with cost less than (k+1)B. Therefore, approximating the Disks problem

to within a factor of 2log
1�
 n for any 
 > 0 is quasi-NP-hard, as the additive error

and the polynomial increase of the input size disappear by adjusting 
.

Our proof shows the hardness of theDisks problem when translations are limited

to the North and East. If we allow translations in arbitrary directions, the theorem

holds using this same construction. Furthermore, even if we are not restricted to

linear moves, we could prove the same lower bound for minimizing the number of

disks removed.

It is also easy to see that the disks can be replaced by axis-aligned, 2�2 squares

and the construction still holds. For higher dimensions, the walls can be extended to

block any useful motions in other dimensions, while still using polynomially many

disks. 2

10. On the Hardness of and/or Scheduling

We feel that the problem of scheduling with and/or precedence constraints

raises several important complexity issues, of considerable interest in their own right.

This form of precedence constraints is a fairly natural extension to the standard

scheduling problem, yet the e�ect of this change on the di�culty of the problem



Complexity Measures for Assembly Sequences 411

is quite dramatic. We pose a series of open directions of research related to where

this problem �ts into the theory of approximability.

In Section 7, we considered several versions of this scheduling problem, giving

reductions from one to another, and then proved a lower bound of 2log
1�
 n against

the approximability of all of these problems by showing that the easiest of these

versions captures the Label Covermin problem as a special case. It is open to

determine a separation between any of the steps of the series of reductions. That

is, the Label Covermin results provide our strongest results even for the most

general and/or scheduling problem, yet there is reason to believe this may be an

even more di�cult problem. It is already conjectured that Label Cover is truly

n�-hard to approximate for some � > 0,4 a result that would carry over through all

of our reductions. However it may be possible to strengthen the lower bounds for

and/or scheduling without necessarily settling the Label Cover conjecture.

We examined a very structured class of instances of and/or scheduling which

had what we termed internal-tree precedence constraints, and we looked at the

problem of minimizing the number of leaves that are scheduled. Without loss of

generality, we can assume that the root of our tree is an and-node. Without a

bound on the out-degree of the internal nodes, we can always collapse the internal

nodes into alternating levels of and-nodes followed by levels of or-nodes, eventually

followed by a single level of leaves. Now we can consider the complexity of the prob-

lem based on the number of alternating levels. If we consider one full alternation, an

and-node at the root, followed by a level of or-nodes, followed by the level of leaves,

this problem is exactly equivalent to the Set Cover problem. Every instance of

Set Cover can be written as a suitable scheduling instance and vice versa. To see

the connection, we equate each leaf with a subset, and each or-node with an item in

the universe. The precedence constraint for each or-node enforces that one of the

subsets containing the associated element must be chosen. If we consider two full

alternations, as we saw in Theorem 11, we can already express Label Covermin.

However it is not at all clear that this problem is equivalent to Label Coverminas

we do not know whether an instance of this restricted and/or scheduling can be

translated into a Label Cover instance. Furthermore, what happens when we go

to three full alternations, or to an arbitrary depth internal-tree? Does this hierar-

chy collapse at some point, and if so when? Can the inapproximability bounds be

strengthened for these versions? What if we consider the general problem without

internal-tree precedence constraints?

There are several areas of research that may prove bene�cial in answering some

of these questions. The �rst is a study of constraint satisfaction problems48 which

considers the the problem of minimizing the number of ones required to satisfy a

collection of constraints on boolean variables. The main result is that there are

a �nite number of distinct levels of approximability for minimizing the number of

ones needed in satisfying such constraint systems. These results, however do not

apply to this problem as their constraint systems must be expressible using con-

straints that are bounded arity functions on the �nal variables. However, their work

may relate to our problem when both the depth and max degree are bounded by a
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constant, a case we have not considered. Secondly, there is a great deal of previous

work related to the size and depth of boolean circuits, including those for mono-

tone boolean formulae; see Refs. [49,61,74]. It is clear than an arbitrarily complex

formula on n leaves can be collapsed into an and/or tree with a single alternating

level, where the top choice is of picking one of the satisfying assignments, and for

each satisfying assignment, you must schedule all of the leaves that correspond to

variables set to one. The problem here is that the number of internal nodes in this

representation is no longer polynomial in the number of leaves, and this condition

was necessary for our reductions. It may be possible to use some of the previous

work in circuit complexity to strengthen some of our inapproximability results for

and/or scheduling.

11. Conclusions and Open Problems

We explain the lack of progress in �nding optimal or near-optimal assembly se-

quences by formally proving the inapproximability for minimizing the cost of an

assembly sequence for a variety of desired cost measures. We look at several vari-

ants of the problem based on either full or partial (dis)assembly, and we classify the

approximability of the problems based on the desired cost measure and additional

restrictions placed on the allowed sequences. For a graph-theoretic generalization

of these problems, we show that achieving an approximate solution within a factor

of 2log
1�
 n of optimal, for any 
 > 0, is di�cult for many of the cost measures

we consider. As a special case, we prove similar hardness results for the problem

of scheduling with and/or precedence constraints. Finally, as our graph-theoretic

problem is a generalization, we prove hardness results for several complexity mea-

sures in simple geometric settings. For minimizing the number of parts which must

be removed to access a key part, we match our strongest inapproximability results,

even for a setting consisting entirely of unit disks in the plane, while using simple

translations to in�nity to remove parts. For minimizing the number of directions

used or the number of re-orientations, our geometric lower bounds are far weaker

than their graph-theoretic counterparts.

Our hope is that this work can be used to better understand the source of the

di�culties, possibly leading the way to successful approximation algorithms, or else

in redirecting future e�orts into identifying other structure or properties of industrial

assembly sequencing instances which would allow for better approximations.

The overwhelming open problem which remains is to develop non-trivial approx-

imation algorithms for any of the settings which we study. The importance of our

graph-theoretic model is that it captures techniques that are currently used for �nd-

ing feasible sequences for a great deal of geometric settings. Achieving any positive

results in this model would immediately apply to all of these geometric settings.

Although our lower bounds show that success in this model is limited, achieving

something such as a
p
n-approximation would still be of great practical value. Au-

tomated assembly sequencers are beginning to have more impact in industrial use,

and for a manufacturer, it is of no comfort to simply say that a problem is di�cult.

The product is going to have to be manufactured one way or another, and so any



Complexity Measures for Assembly Sequences 413

improvement to the cost is quite valuable.

Alternatively, it may be the case that by studying di�erent geometric settings

individually, much better approximations can be achieved by taking advantage of

additional structure in the problem. Although we have shown that in some cases, the

geometric problem is indeed quite hard, many of our geometric lower bounds are far

weaker than the general bounds. These geometric problems are the true motivation

for this work and so future research should either provide approximation algorithms

for these settings, or else improve the geometric lower bounds to justify the lack of

progress.

Finally, although we have tried to compile a relatively complete list of cost

measures and restrictions which have been considered by previous research, there

are countless other natural variants which could be added to our model of virtual

assembly sequencing. As new settings are motivated by industry, we hope to see

the continuation of this analysis in studying exactly what can and cannot be done

by polynomial-time assembly sequencers. Hopefully, our work can set a standard

for the analysis of optimization in assembly sequencing.
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