Teaching an Object-Oriented CS1 — with Python

Michael H. Goldwasser
Dept. Mathematics and Computer Science
Saint Louis University
220 North Grand Bivd
St. Louis, Missouri 63103-2007
goldwamh@slu.edu

ABSTRACT

There is an ongoing debate regarding the role of object orien-
tation in the introductory programming sequence. While the
pendulum swings to and fro between the “objects first” and
“back to basics” extremes, there is general agreement that
object-oriented programming is central to modern software
development and therefore integral to a computer science
curriculum. Developing effective approaches to teach these
principles raises challenges that have been exacerbated by
the use of Java or C++ as the first instructional language.

In this paper, we recommend Python as an excellent choice
for teaching an object-oriented CS1. Although often viewed
as a “scripting” language, Python is a fully object-oriented
language with a consistent object model and a rich set of
built-in classes. Based upon our experiences, we describe
aspects of the language that help support a balanced intro-
duction to object orientation in CS1. We also discuss the
downstream effects on our students’ transition to Java and
C++ in subsequent courses.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education;
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—object-oriented languages, Python

General Terms

Languages

Keywords
Python, Object Orientation, CS1

1. INTRODUCTION

While it is widely accepted that object-oriented princi-
ples are a necessary component of a computer science cur-
riculum, the community has engaged in a debate for more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’08, June 30-July 2, 2008, Madrid, Spain.

Copyright 2008 ACM 978-1-60558-115-6/08/06 ...$5.00.

David Letscher
Dept. Mathematics and Computer Science
Saint Louis University
220 North Grand Blvd
St. Louis, Missouri 63103-2007
letscher@slu.edu

than a decade as to when and how these principles should be
introduced [2, 5, 9]. One approach suggested by the CC2001
Computer Science volume [16] is an objects-first paradigm
that “emphasizes the principles of object-oriented program-
ming and design from the very beginning.” The presumed
benefit is that it allow students to develop a mindset where
object-oriented concepts have a natural place, rather than
seeing object-oriented programming as a dramatic paradigm
shift later in a curriculum [7, 24, 27].

On the other side of the debate, the concerns are that
object-oriented principles are too complex for beginning stu-
dents to grasp, and that teaching those principles takes time
away from the basics that are needed in CS1 [3, 23]. Pro-
ponents on all sides seem to agree that the development
of a coherent object-oriented approach is challenging. The
question arises as to whether the difficulties are inherent
to teaching the paradigm, or a reflection on the education
community’s failure to develop a means to the end.

A significant challenge is finding a choice of programming
language and environment that is supportive rather than
detrimental. When discussing the objects-first curriculum,
the CC2001 report warns that “many of the languages used
for object-oriented programming in industry — particularly
C++, but to a certain extent Java as well — are significantly
more complex than classical languages. Unless instructors
take special care to introduce the material in a way that lim-
its this complexity, such details can easily overwhelm intro-
ductory students.”

Educators have reported on beginning students’ struggles
with both object-oriented principles and syntax [12, 18, 28].
For this reason, many pedagogical tools have been developed
for use in the classroom, such as BlueJ [17], DrJava [1], Java
Power Tools [22], objectdraw[6]. Materials developed by the
ACM Java Task Force [25] are described in their charter
as “pedagogical resources that will make it easier to teach
Java to first-year computing students without having those
students overwhelmed by its complexity.” While efforts such
as these represent the hard work of dedicated educators, the
sheer volume of such efforts and the need for pedagogical
tools on top of a core language reflects upon shortcomings of
Java and C++ in supporting an introductory programming
course.

In this paper, we advocate for Python as the instructional
language for an object-oriented CS1. An overview of the
existing use of Python in education is given in Section 2.
Our main contribution, in Section 3, is a pedagogy for intro-
ducing object orientation with Python. Our curriculum and
the subsequent transition to Java and C++ is discussed in
Section 4. We conclude in Section 5.

2. PYTHON IN EDUCATION

Python’s use in academia has grown rapidly in recent
years [4, 10, 20, 21, 26], leading to the development of several
introductory textbooks [11, 13, 14, 15, 29]. The attraction
generally stems from its clean and simple syntax, allowing
students to devote greater effort toward learning conceptual
issues and developing applications, with less emphasis on
extraneous syntactical details. Python is also widely used in
industry and championed by several prominent companies.
This shields it from the unfortunate “academic” label some-
times associated with other instructional languages favored
for simplicity (e.g., Pascal, Scheme).

The novelty of our approach [14] is the strong emphasis
given to Python’s object orientation. Others have leveraged
the lower overhead of Python to provide a gentler introduc-
tion to non-majors, to support a brief programming unit of
a larger breadth-first course, or to explore a specific applica-
tion area (e.g., robotics, multimedia, scientific computing).
Yet these existing approaches greatly delay the treatment of
object-oriented principles. As a benchmark, we consider the
placement of user-defined classes in several popular Python
textbooks. This topic is introduced in Chapter 10 of 13
within [29], Chapter 14 of 16 within [15], Chapter 9 of 12
within [13], and Chapter 12 of 20 within [11] (and slated to
slip to the appendix in the second edition).

3. PYTHON’S IMPACT ON TEACHING
OBJECT ORIENTATION IN CS1

Our general reason for using Python is quite similar to
those using Python for teaching a procedural approach: to
allow greater emphasis on core principles with less unwanted
focus on syntax. Our goal is a steady progression in which
each lesson is consistent with previous lessons. In particu-
lar, we want the awareness of objects to be clear from the
beginning, rather than an awkward paradigm shift later in
the course. Yet we do not want to front-load the course with
every aspect of object-oriented programming, nor unneces-
sary details of language syntax. It is in this regard that
Python’s simplicity provides great advantage over the use
of Java or C4++. In the remainder of this section, we out-
line the impact of the language choice, paying particular
attention to oft-stated challenges associated with teaching
an objects-first curriculum.

3.1 Getting Started by Using Objects

An important first step when introducing object orienta-
tion is providing students with examples of intuitive, tan-
gible objects with which to interact. Often, this barrier is
overcome by having students use packages that are not part
of the standard language, such as microworlds (e.g., [8]) or
graphics (e.g., [6, 22, 25]). However, an over-reliance on
classes that are not part of the standard language decreases
the transparency and portability of a curriculum. Python
supports a rich set of built-in classes (e.g., str, list, dict,
file), providing immediate examples of both mutable and
immutable objects with which to experiment.

A second challenge is how to support students writing
their first programs without being overwhelmed with syn-
tax. The requirement for a main routine in Java and C++,
and worse yet the need for that routine to be a static mem-
ber of a class in Java, causes students to be immediately

exposed to aspects of a language that are not appropriate
at an early stage of a course (the classic “public static void
main” issue). To remedy this, pedagogical IDEs such as
DrJava [1] and BlueJ [17] provide students with an interac-
tive environment in which they can experiment with objects.
DrJava supports an interactive session in which Java com-
mands can be individually evaluated. BlueJ supports the
concept of an “object bench” allowing users to instantiate
and manipulate objects outside of the context of a typical
program.

In Python, the standard interpreter can be used as just
such a pedagogical tool. Our students’ first computing expe-
rience in CS1 is an interactive session in the Python inter-
preter. For example, the following Python session shows a
sample interaction with an instance of the list class.

>>> groceries = list ()

>>> groceries.append ('bread')
>>> groceries.append ('milk"')
>>> groceries

['bread', 'milk']

>>> groceries.append ('cereal')
>>> groceries.sort ()

>>> groceries

['bread', 'cereal', 'milk']
>>> groceries.pop()

'milk’

>>> groceries

['bread', 'cereal'l]

As with DrJava, each command is evaluated when entered,
allowing the user to observe the effect of the commands (or
to be informed in case of an error). The interpreter is also
similar to BlueJ’s object bench, as it allows for the instan-
tiation and manipulation of objects without the syntactic
overhead of a formal main routine.

Yet unlike DrJava and BlueJ, the Python interpreter is
part of the standard distribution; we avoid an early reliance
on external tools. Our students’ transition from interac-
tive sessions to writing source code is rather straightforward.
The source code is a script, written with almost precisely the
same keystrokes that were otherwise typed directly into the
interpreter. The only new lesson at this time is a focus on
the distinction between the role of the software’s developer
versus its user. This leads to the introduction of the print
and raw_input commands for user interactions.

3.2 A Consistent Object Model

Another advantage of Python is a consistent object model.
All data types are classes, in contrast to the discord between
Java’s primitive types and object types. Furthermore, each
identifier serves as a reference to an underlying object (akin
to the treatment of Java’s object types). This is the only
model in Python, unlike Java which supports value and ref-
erence variables, and C++ which allows value, reference,
and pointer models.

The consistency carries over to the assignment semantics.
An identifier can be portrayed as a label referencing the
underlying object, in which case the assignment statement
associates (or reassociates) the identifier on the left-hand
side as a label for the value expressed on the right-hand side.
Parameter passing is explained with similar consistency; an
identifier serving as a formal parameter is assigned to the
underlying object designated as the actual parameter.

3.3 Dynamic Typing

The lack of explicit type declaration in Python greatly
simplifies its syntax. This allows a programmer to begin
using an object with a command such as w = Widget(),
rather than the more verbose Widget w = new Widget() as
seen in Java. Dynamic typing similarly streamlines the dec-
laration of function signatures and, as we will discuss in
Section 3.6, the support for generics and polymorphism.

Admittedly, object-oriented purists voice concern about
using a dynamically-typed language. Perhaps this gives an
initial (yet false) impression that data types are amorphous.
This might seem counter to a focus on objects being drawn
from classes. We emphasize that Python is both dynami-
cally typed and strongly typed. Each object has a defini-
tive type that never changes and self-awareness of its type
encoded in its representation. There is simply no syntactic
declaration of the data type associated with an identifier.

The interpreter can be used to reinforce this lesson. For
example, the command type(groceries) reports the type of
object currently associated with the identifier groceries. The
names of the object’s methods are reported by the command
dir(groceries), and formal documentation is provided with
the interpreter command help(groceries). To instill a deeper
understanding of the relationship between an identifier and
an object, the command id(groceries) reports a unique inte-
ger identifying the underlying object (in effect, a memory
address).

3.4 C(lass Definitions

Once students have been introduced to the use of objects
and the basic control structures, the high-level syntactic
structure of a Python class definition follows a familiar style.
As an example, Figure 1 gives a partial definition of a Point
class. While this syntax may seem unusual to experienced
Java and C++4 programmers, it is quite natural for students
learning Python. There is an initial declaration followed by
an indented block of code, with individual methods defined
using a syntax similar to stand-alone functions.

As an artifact of dynamic typing, there are no explicit dec-
laration of the instance variables; they are introduced on the
fly, typically from within the body of an initializer method,
as shown in lines 2—4 of Figure 1. A related issue is the use
of parameter self as a reference to the particular instance
upon which a method is invoked (akin to the implicit this
of Java or C++). An external call of p.scale(2) is internally
equivalent to the signature scale(p, 2). The self reference is
used to explicitly qualify all members of the object, such
as the data member self. x at line 3 and the intermediate
call to member function scale at line 26. This syntax dis-
tinguishes members from unqualified identifiers, such as the
local variable dx at line 19.

While this is one way in which Python’s syntax is more
verbose than that of Java and C++, the use of the self
qualifier draws attention to the distinction between instance
scope versus local scope. This is already a major theme that
must be addressed when teaching object orientation, and a
potential confusion with the implicitness of this in Java and
C++ (or the masking of an instance variable by the errant
declaration of a similarly named local variable). Notice the
parallel between self and other in the distance method. In
this context, self is a reference to a Point as is parameter
other (presumably). At line 19, we use the syntax self._x
just as we use the syntax other._x.

1 class Point:
2 def __init__(self):
3 self. x =10
4 self_y =0
5
6 def getX(self):
7 return self._x
8
9 def setX(self, x):
10 self._x = x
11
12 # ... some methods omitted for brevity ...
13
14 def scale(self, factor):
15 self._x *= factor
16 self._y = factor
17
18 def distance(self, other):
19 dx = self._x — other._x
20 dy = self._y — other._y
21 return sqrt(dx * dx + dy * dy)
22
23 def normalize(self):
24 mag = self.distance(Point())
25 if mag > 0:
26 self.scale(1/mag)

Figure 1: A partial definition of a Point class.

3.5 Encapsulation

A Python class definition does not contain any syntac-
tic declarations of visibility (i.e., public, private, protected).
Nor does Python strictly enforce any access control. Again,
this causes discomfort for object-oriented purists, as formal
access control is an important tool for software developers.

Yet in the context of CS1, students do not recognize this
as an issue. We teach encapsulation as a core principle of
object-oriented programming, and establish it as de facto
practice in all examples. We simply do not introduce the
syntax of access control.

Python has informal support for encapsulation based on
naming conventions. Elements having identifiers starting
with a single underscore (e.g., _x) are considered non-public
by convention. While they can still be accessed directly from
other components, such use is discouraged. Python makes
some effort to hide such elements, as they are not automat-
ically displayed when using the help command, nor are they
imported when using the from module import * syntax.

3.6 Generics and Polymorphism

One of the great advantages of Python’s dynamic typing
in an object-oriented context is the relative ease in accom-
plishing generic programming and polymorphism. We previ-
ously demonstrated the ease of use of Python’s list class for
beginners. A list represents an ordered sequence of generic
objects, internally implemented as an expandable array of
references akin to Java’s ArrayList class. While the concept
of a container is similar in the languages, the simplicity of
Python’s syntax is in stark contrast to the overhead when
downcasting from Java’s Object class in Java 1.4, or using
parameterized types in Java 5 and C++.

Python’s dynamic typing also eases the introduction to
polymorphism, providing yet another opportunity to focus
on an important object-oriented concept with minimal syn-
tactic overhead. When a programmer accesses a method of
an object with a syntax foo.bar(), the resolution of bar is
performed at run time. If the object identified as foo has
such a method, all is well; otherwise an exception is raised.
This style of type checking is often termed duck typing (if it
walks like a duck and quacks like a duck, it must be a duck).

Consider the goal of writing a polymorphic function that
accepts a parameter assumed to support a subset of behav-
iors. In Python, we simply use it. In Java, this task is accom-
plished by formally declaring a common interface, having all
relevant classes formally declare their implementation of the
interface, and defining the polymorphic function to accept
a variable with the designated interface type. Pure abstract
classes serve a similar purpose in C++.

3.7 Inheritance

Python supports single and multiple inheritance with min-
imal syntactic overhead. The name of any parent classes
are specified within parentheses as part of the child class
declaration. Name resolution proceeds naturally, looking
for members at the instance scope, then at the class scope,
then the parent class scope, and so on. This provides a clear
mechanism for overriding behaviors. An overridden member
(e.g., a parent constructor) can be accessed using the name
of the parent class as an explicit qualifier for the method.

As an example, Figure 2 defines a child class patterned
after the Java implementation of Dictionary2.java given
by Lewis and Loftus [19]. Note the declaration of Book2
as a parent class in line 1 and the invocation of the parent
constructor at line 3.

4. TRANSITION TO JAVA AND C++

We teach CS1 with the forethought of our students’ later
transition to other object-oriented programming languages,
most notably Java and C++. The concepts introduced in
Python do not need to be untaught; we simply augment
those experiences with additional lessons.

A certain amount of the transition is due to superficial
differences such as the designation of block structures, the
names of primitive types, the use of 1/O, and the role of a
formal main routine. Ninety percent of the more significant

1 class Dictionary2(Book?2):
2 def __init__(self, numPages, numDefinitions):
3 Book2. __init__(self, numPages) # parent version
4 self._definitions = numDefinitions # new attribute
5
6 def computeRatio(self):
7 return self._definitions/self._pages
8
9 def setDefinitions(self, numDefinitions):
10 self._definitions = numDefinitions
11
12 def getDefinitions(self):
13 return self._definitions

Figure 2: Python variant of the Dictionary2 class,
originally given in Java by Lewis and Loftus [18].

differences are related to a single theme: moving from an
interpreted dynamically-typed language to one that is com-
piled and statically-typed. This affects the syntax and the
software development cycle. We motivate the switch prag-
matically, noting that greater run-time efficiency is achieved
when the system performs more work at compile time.

Explicit type declarations arise in the context of local vari-
ables, parameters, return values, and data members of a
class. Our Python students are keenly aware of (presumed)
data types in these contexts, so this is not a major hur-
dle. Other aspects of the transition are framed in this light.
For example, with explicit declaration of a class’s members
it becomes possible for the compiler to recognize _x as an
instance variable without an explicit self qualifier. The need
for additional syntax with generics and polymorphism in
Java and C++ can be motivated by the need for compile-
time checking. The declaration of formal access controls to
enforce encapsulation is another example of more rigorous
compile-time checking to support the principles of object
orientation.

The varying object models of Java and C++ are novel
for students transitioning from Python. The jump from
Python to Java is more benign. Python’s model for identi-
fiers, assignment semantics, and information passing is iden-
tical to Java’s reference model for object types. It is only the
distinction made by Java for primitive types that must be
explained. Both Python and Java rely on garbage collection
to shield a programmer from low-level memory management.
The jump from Python to C++ is more extreme due to the
inherent complexity of C++. There are three different stor-
age models (value, reference, pointer), and any of those can
be selected for any particular piece of data. In addition, the
distinction between static and dynamic memory allocation
places greater responsibility on the C++ programmer.

In our curriculum, CS2 is a traditional data structures
course building upon object-oriented principles in designing
abstract data types with efficient low-level implementations
encapsulated within. We intentionally transition to C++ for
this course, knowing that it is at the far extreme of Python
on the spectrum of object-oriented languages. The focus on
data structures and efficiency allows us to motivate the intro-
duction of system-level concepts such as pointers, memory
management, and varying models for information passing.
Having made the transition from Python to C++, we intro-
duce Java to our students as part of a CS3 course focused
on object-oriented design. This context allows us to address
aspects of the three languages that differ significantly, such
as the underlying object model, use of inheritance, polymor-
phism, and generics.

5. CONCLUSIONS

We have been very pleased with the use of Python, finding
that it affords a clear, coherent, and consistent presentation
of object-oriented programming. Our initial batch of Python
CS1 students are progressing through the curriculum, and
anecdotally the change has been successful.

Yet we recognize that a widespread revision to CSI1 is
a major undertaking for an institution. In the long run,
we would like to see formal studies as to the short-term
and long-term effectiveness of the approach in shaping a
student’s educational experience. At this point, our goal is
to disseminate the strategy in hope of gaining a wider set of
early adopters and building a community for discussion.

6.
1]

[10]

[11]

[12]

REFERENCES

E. Allen, R. Cartwright, and B. Stoler. DrJava: A
lightweight pedagogic environment for Java. In Proc.
83rd SIGCSE Technical Symp. on Computer Science
Education (SIGCSE), pages 137-141, Covington,
Kentucky, Feb. 27-Mar. 3, 2002.

O. Astrachan, K. Bruce, , E. Koffman, M. Koélling,
and S. Reges. Resolved: Objects early has failed. In
Proc. 36th SIGCSE Technical Symp. on Computer
Science Education (SIGCSE), pages 451-452,

St. Louis, Missouri, Feb. 2005. ACM Press.

F. Bailie, M. Courtney, K. Murray, R. Schiaffino, and
S. Tuohy. Objects first — does it work? J. Computing
Sciences in Colleges, 19(2):303-305, Dec. 2003.

D. Blank, L. Meedan, and D. Kumar. Python
robotics: An environment for exploring robotics
beyond LEGOs. In Proc. 34th SIGCSE Technical
Symp. on Computer Science Education (SIGCSE),
pages 317-321, Reno, Nevada, Feb. 2003.

K. B. Bruce. Controversy on how to teach CS 1: A
discusion on the SIGCSE-members mailing list.
SIGCSE Bulletin, 37(2):111-116, June 2005.

K. B. Bruce, A. Danyluk, and T. Murtaugh. A library
to support a graphics-based object-first approach to
CS 1. In Proc. 32nd SIGCSE Technical Symp. on
Computer Science Education (SIGCSE), pages 6-10,
Charlotte, North Carolina, Feb. 2001.

S. Cooper, W. Dann, and R. Pausch. Teaching

objects-first in introductory computer science. In Proc.

34th SIGCSE Technical Symp. on Computer Science
Education (SIGCSE), pages 191-195, Reno, Nevada,
Feb. 2003.

W. Dann, S. Cooper, and R. Pausch. Learing to
Program with Alice. Prentice Hall, 2006.

R. Decker and S. Hirshfield. The top 10 reasons why
object-oriented programming can’t be taught in CS1.
In Proc. 25th SIGCSE Technical Symp. on Computer
Science Education (SIGCSE), pages 51-55, Phoenix,
Arizona, Mar. 1994.

Z. Dodds, C. Alvarado, G. Kuenning, and

R. Libeskind-Hadas. Breadth-first CS 1 for scientists.
In Proc. 12th Annual Conf. on Innovation and
Technology in Computer Science (ITiCSE), pages
2327, Dundee, Scotland, June 2007.

A. B. Downey, J. Elkner, and C. Meyers. How to
Think Like a Computer Scientist: Learning with
Python. Green Tea Press, Needham, MA, 2002.

A. E. Fleury. Programming in Java:
Student-constructed rules. In Proc. 31nd SIGCSE
Technical Symp. on Computer Science Education
(SIGCSE), pages 197-201, Austin, Texas, May 2000.
T. Gaddis. Starting Out with Python. Addison-Wesley,
2009.

M. H. Goldwasser and D. Letscher. Object-Oriented
Programming in Python. Prentice Hall, 2007.

M. Guzdial. Introduction to Computing and
Programming in Python: A Multimedia Approach.
Prentice Hall, 2005.

Joint Task Force on Computing Curricula. Computing
Curricula 2001: Computer Science Final Report.

(17]

(18]

(22]

29]

IEEE Computer Society and the Association for
Computing Machinery, Dec. 2001.
http://www.computer.org/education/cc2001 /final.

M. Kolling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. J. Computer
Science Education, 4(13):249-268, Dec. 2004.

E. Lahtinen, K. Ala-Mutka, and H.-M. Jdrvinen. Early
programming: A study of the difficulties of novice
programmers. In Proc. Tenth Annual Conf. on
Innovation and Technology in Computer Science
(ITiCSE), pages 14-18, Monte da Caparica, Portugal,
June 2005.

J. Lewis and W. Loftus. Java Software Solutions:
Foundations of Program Design. Addison-Wesley, fifth
edition, 2007.

A. Radenski. "Python first”: A lab-based digital
introduction to computer science. In Proc. 11th
Annual Conf. on Innovation and Technology in
Computer Science (ITiCSE), pages 197-201, Bologna,
Italy, June 2006.

D. Ranum, B. Miller, J. Zelle, and M. Guzdial.
Successful approaches to teaching introductory
computer science courses with Python. In Proc. 37th
SIGCSE Technical Symp. on Computer Science
Education (SIGCSE), pages 396-397, Houston, Texas,
Mar. 2006.

R. Rasala, J. Raab, and V. K. Proulx. Java Power
Tools: Model software for teaching object-oriented
design. In Proc. 32nd SIGCSE Technical Symp. on
Computer Science Education (SIGCSE), pages
297-301, Charlotte, North Carolina, Feb. 2001.

S. Reges. Back to basics in CS1 and CS2. In Proc.
87th SIGCSE Technical Symp. on Computer Science
Education (SIGCSE), pages 293-297, Houston, Texas,
Mar. 2006.

R. J. Reid. The object oriented paradigm in CS1. In
Proc. 24th SIGCSE Technical Symp. on Computer
Science Education (SIGCSE), pages 265269,
Indianapolis, Indiana, Feb. 1993.

E. Roberts, K. Bruce, R. Cutler, J. H. Cross 11,

S. Grissom, K. Klee, S. Rodger, F. Trees, 1. Utting,
and F. Yellin. The ACM Java task force: Final report.
In Proc. 37th SIGCSE Technical Symp. on Computer
Science Education (SIGCSE), pages 131-132,
Houston, Texas, Mar. 2006.

C. Shannon. Another breadth-first approach to CS I
uisng Python. In Proc. 34th SIGCSE Technical Symp.
on Computer Science Education (SIGCSE), pages
248-251, Reno, Nevada, Feb. 2003.

M. Temte. Let’s begin introducing the object-oriented
paradigm. In Proc. 22nd SIGCSE Technical Symp. on
Computer Science Education (SIGCSE), pages 7377,
San Antonio, Texas, Mar. 1991.

I. Utting. Problems in the initial teaching of
programming using Java: The case for replacing J2SE
with J2ME. In Proc. 11th Annual Conf. on Innovation
and Technology in Computer Science (ITiCSE), pages
193-196, Bologna, Italy, June 2006.

J. M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin, Beedle & Associates,
2003.

