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Abstract

Over the past decade, there has been great interest in the study of buffer management
policies in the context of packet transmission for network switches. In a typical model, a switch
receives packets on one or more input ports, with each packet having a designated output port
through which it should be transmitted. An online policy must consider bandwidth limits on the
rate of transmission, memory constraints impacting the buffering of packets within a switch, and
variations in packet properties used to differentiate quality of service. With so many constraints,
a switch may not be able to deliver all packets, in which case some will be dropped.

In the online algorithms community, researchers have used competitive analysis to evaluate
the quality of an online policy in maximizing the value of those packets it is able to transmit. In
this article, we provide a detailed survey of the field, describing various models of the problem
that have been studied, and summarizing the known results.

1 Introduction

Packet switches play an integral role at the lower levels of network communication. For this
reason, the development of effective switching policies is of great importance. To analyze these
policies, the networking community has historically relied on real-world trace data, or stochastic
models for network traffic. The introduction of these problems to the theory community began
with three papers that applied competitive analysis to the domain: the INFOCOM 2000 paper by
Aiello et al. [AMRR00], the PODC 2000 paper by Mansour, Patt-Shamir, and Lapid [MPSL00],
and the STOC 2001 paper by Kesselman et al. [KLM+01]. Early algorithmic work in this area
is surveyed by Azar [Aza04] and by Epstein and van Stee [EvS04], and subsequent results are
mentioned in past SIGACT News columns by Jawor [Jaw05] and Chrobak [Chr08]. However, this
remains an active area of research and our goal with this article is to provide an updated survey of
algorithmic work related to switching policies and buffer management problems.

A typical model for a network switch contains a set of input ports and a set of output ports.
For a slotted time model, one packet may arrive per input port at a given time step, with each
packet designating a particular output port through which it is to be delivered. At each step, some
constant number of packets can be transmitted through each output port. The switch’s internal
fabric allows for the transfer of packets from the input ports to the output ports, with the precise
latency depending on the structure of the fabric and the switching policy. A schematic diagram of
a switch is given in Figure 1.

1 c©Michael H. Goldwasser, 2010.
2Dept. of Mathematics and Computer Science, Saint Louis University, St. Louis, MO 63103. goldwamh@slu.edu.
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Figure 1: Schematic of a typical network switch

Because of the latency and bandwidth constraints, packets must be buffered at various places
within the switch and some packets may be dropped. Networks with quality-of-service (QoS)
considerations can be modeled with wp > 0 designating the weighted value of packet p. For all
models that we consider, the goal of a policy is to maximize the weighted throughput of the switch,
that is, the sum of the values of those packets that are successfully transmitted. Competitive
analysis is used to measure the effectiveness of an online switching policy relative to the optimal
(offline) performance on the same instance [ST85, KMRS88]. We defer to the book by Borodin and
El-Yaniv for formal definitions of deterministic and randomized competitiveness in the context of
a maximization problem [BE98].

In this article, we survey research involving various models of buffer management problems.
Packets might be buffered at the input ports, the output ports, within the switch fabric, or some
combination of these. Models vary based on buffering constraints such as whether buffers have a
maximum capacity, and if so, whether multiple buffers within the switch have independent dedicated
memory or are sharing a common memory pool. Other factors include whether packets can be
dropped once they have been added to a buffer, and whether they can be reordered within a buffer.

Our survey begins by examining the fundamental case of a single output port with a dedicated
buffer. Results for this model apply to the more general case when there are multiple output ports
with each port maintaining an independent buffer of size B. In such a scenario, a buffer management
policy can be applied individually to each port. An arbitrary number of packets may arrive per
time step, but an output port is limited to transmitting some constant number of packets per step
(typically, one). In Section 2, we consider a model in which a buffer has a maximum capacity of
B packets and the subset of packets that are transmitted must be sent in first-in, first out (FIFO)
order. The second model, considered in Section 3, relaxes the restrictions on the buffer having
an explicit capacity and FIFO semantics. Instead, each individual packet specifies a deadline by
which it must be transmitted or dropped. This bounded-delay model is motivated by networks that
guarantee a differentiated quality of service in regard to end-to-end transmission time.

In Section 4, we consider more general models for buffer management within a switch. The first
case is when each output port has a dedicated FIFO buffer, but with a maximum capacity on the
combined buffer sizes. Another model relies on packets being buffered at the input ports, with each
input port maintaining an independent FIFO buffer of size B, and with a constraint on the internal
switch fabric such that at most one packet can be transmitted from the system per time step. We
also examine research involving more general CIOQ switches, with packets able to be buffered at
both input and output ports, and crossbar switches, which have additional buffers available in the
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internal switch fabric.
In Section 5, we review work that relies on resource augmentation in the competitive analysis

of buffer management problems. In this line of research, online policies are developed for switches
that are assumed to have a larger buffer or faster throughput than that used in a reference solution.

In Section 6, we examine several closely related models introduced in recent years. Most notably,
we discuss a SODA 2009 paper by Bienkowski et al. introducing a generalization of the bounded-
delay model based on “collecting weighted items from a dynamic queue” [BCD+09], a SODA 2008
paper by Fiat, Mansour, and Nadav introducing a model in which the value of a packet degrades due
to time spent in the buffer [FMN08], and an IPDPS 2009 paper by Kesselman, Patt-Shamir, and
Scalosub introducing a model with inter-packet dependencies [KPSS09]. We conclude in Section 7,
with a list of open questions for future research.

2 FIFO Model

In this section, we consider the following model for managing a single output port. Packets arrive,
one at a time, destined for the particular output port. At regular intervals, the switch is given
an opportunity to transmit one packet through the port (or more generally, up to m packets,
for some constant bandwidth m ≥ 1). Transmitted packets must be sent in FIFO order, and a
dedicated buffer can hold at most B packets at any point in time. If there are B previously buffered
packets and a new one arrives, a packet (possibly the arriving one) must be dropped to adhere to
the capacity requirement3. Two submodels have been considered. In a nonpreemptive model, an
arriving packet must be immediately dropped or else accepted into the FIFO buffer and eventually
transmitted. In a preemptive model, packets can be inserted into the buffer yet later dropped. We
note that an offline solution can always be constructed without preemptions, since it need only to
buffer packets that will eventually be transmitted. Furthermore, the FIFO requirement is irrelevant
in the offline setting, as any sequence of transmittals can be reordered to FIFO without changing
the number of packets that are buffered at any given time.

2.1 Nonpreemptive Model

Aiello et al. introduce the nonpreemptive model by studying a restricted two-valued case in which all
packets have value either 1 or α > 1 [AMRR00, AMRR05]. They prove that any policy, even with
randomization, can be at best (2 − 1

α)-competitive. The proof relies on two possible constructions,
both beginning with the arrival of B low-valued packets. In the first construction, nothing else
arrives and so the optimal solution is to accept all packets. In the second construction, B high-
valued packets are subsequently released during the same time step, in which case the optimal
solution is to reject all of the low-valued packets and accept the high-valued ones. However, an
online policy must accept some number of low-valued packets before knowing whether more packets
are coming. Formally, let random variable x denote the number of low-valued packets accepted by
an online policy. With the first instance, the randomized competitiveness is B

E[x] . On the second

3We note that some researchers consider a slotted-time model in which the switching policy considers the entire
batch of arriving packets during a given time-slot, perhaps with flexibility in reordering those packets. Furthermore,
some authors let B denote the maximum size of the buffer as it exists after the transmission that ends a time-slot,
thereby allowing strictly more than B packets to be held for transient times when considering new arrivals.
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instance, the competitive ratio is at most Bα
E[x+(B−x)α] = Bα

Bα−(α−1)E[x] . The lower bound of 2 − 1
α

comes by taking the worse of the two ratios, with the balance achieved when E[x] = Bα
2α−1 .

Aiello et al. analyze the competitive ratio of five online policies, considering the specific cases of
α = 1, α = 2, and α = ∞, but none of those policies match the lower bound. Andelman, Mansour,
and Zhu provide a deterministic policy achieving optimal (2 − 1

α)-competitiveness [AMZ03, Zhu04].
Their Ratio Partition policy accepts each high-valued packet when possible, and subsequently
“marks” the earliest α

α−1 low-valued packets in the queue (if any). A newly released low-valued
packet is accepted so long as doing so would still leave a number of empty buffer slots that is at
least α−1

α times the number of currently unmatched low-valued packets.
For the more general case in which packets may have arbitrary values between 1 and α > 1,

Andelman, Mansour, and Zhu prove the optimal competitiveness to be Θ(log α) [AMZ03, Zhu04].
The lower bound is a natural extension of the two-valued construction. Rather than offering B
packets of value 1 followed possibly by B packets of value α, an adversary proceeds by offering B
packets of value 1, then B packets of value (1 + ǫ), then B of value (1 + ǫ)2 and so on. The optimal
strategy is to wait for the last wave of B packets, but an online policy cannot predict the number
of waves so it must accept enough packets from each wave to insure its competitiveness if that
wave were the last. An analysis leads to the deterministic lower bound of 1 + ln(α); the journal
version of this paper contains a variant of this construction using Yao’s technique to provide a
randomized lower bound of log α+2

2 . On the positive side, they provide an asymptotically optimal
e ln(α)-competitive deterministic policy by dividing the range [1, α] into n classes of values, and
reserving a portion of the buffer capacity for each of these classes. The upper bound is improved to
2+ln(α)+O(ln2(α)/B) by Andelman and Mansour [AM03], matching the lower bound of 1+ln(α)
up to a constant additive factor.

2.2 Preemptive Model

The preemptive version of the FIFO model was introduced by Mansour, Patt-Shamir, and Lapid in
the context of video streaming [MPSL00, MPSL04]. The lower bounds presented in Section 2.1 do
not apply, because an online policy can hold low-valued packets but later preempt them in favor of
newly-arrived high-valued packets. As an illustrative example, consider the following construction
showing that a classic Greedy policy is not significantly better than 2-competitive [KLM+01,
KLM+04]. At time 0 for a slotted model, B − 1 packets with value 1 arrive followed by a single
packet of value α > 1. For each time slot from 1 through B − 2, an additional packet with value
α arrives. Finally, at time B − 1, a burst of B additional α-packets arrives. Prior to the final
burst, the buffer capacity is never a direct constraint; it is possible to accept all packets, always
transmitting the earliest (low-valued) packet. Therefore, at the onset of time B − 1, such a greedy
policy will have transmitted the original B − 1 low-valued packets and will currently have B − 1
high-valued packets buffered. Unfortunately, it can effectively accept only one of the final burst of
B packets, achieving a total value of B − 1 + αB. In contrast, Opt will have ignored all of the
low-valued packets, scheduling a high-valued packet at each time slot from 0 to B − 2, and then
accepting all B of the final burst. The competitive ratio on this instance is thus α(2B−1)

B−1+αB . For large

α and B this approaches 2. For fixed α but large B it approaches 2 − 2
α+1 , and for fixed B but

large α it approaches 2 − 1
B .
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deterministic randomized
upper lower upper lower citation comments

1.282 [KLM+01, KLM+04]
2 − 2

α+1 [KLM+01, KLM+04] Greedy

1.894§ derived from [KM01] best of Greedy and β-Preemptive
1.544§ derived from [KM03] improved analysis of β-Preemptive
1.304 [LPS02, LPS03] Mark&Flush

1.25 1.197 [And05] Randomized Mark&Flush
1.282 [EW06, EW09] Account Strategy (ACC)

§ memoryless

Table 1: Bounds for the two-valued, preemptive FIFO model with m = 1 and B → ∞

Two-valued model

The preceding lower bound on the greedy policy relied on jobs with value either 1 or α > 1. This
construction forms the basis for a lower bound against any deterministic policy for the two-valued
model. To have better performance, a policy must preempt some of the low-valued packets prior
to time B − 1. Yet, an adversary can immediately terminate the construction if a policy were to
preempt too many of the low-valued packets. These factors are balanced as follows. For a fixed α
and B, let t denote the first time at which an α-valued packet would be transmitted when following
a given online deterministic policy on the base construction. We consider two possible instances.
In the first case, the construction ends with a single high-valued packet arriving at time t. In
this case, Opt achieves B − 1 + α(t + 1), while the online policy achieves t + α(t + 1) for a ratio

of B−1+α(t+1)
t+α(t+1) . In the second instance, a burst of B high-valued packets arrives at time t. In this

case, the online policy achieves t + αB, while Opt achieves α(B + t) by sending t high-valued
packets from 0 through t − 1 followed by the final burst of B packets. For a fixed t, an adversary

can select the worse of the two instances, providing a lower bound of max
(

B−1+α(t+1)
t+α(t+1) , α(B+t)

t+αB

)

.

For a fixed α and B, an online policy can select t to minimize that maximum. An adversary can
thus choose an α that leads to the strongest such lower bound. Kesselman et al. perform numerical
analysis4 concluding that the adversary should pick α ≈ 4.01545, in which case the competitive
ratio is no better than approximately 1.282 [KLM+01, KLM+04].

Table 1 presents a summary of all two-valued results; we defer discussion of the randomized
case until later in this section. The earliest policy to be analyzed is the deterministic Greedy
policy, defined (for general values) as follows. The switch always accepts a new packet if there
is available space in the buffer. Preemptions only occur when a new packet risks overflowing
the buffer, in which case the lowest-valued packet, among the new packet and all those currently
buffered, is dropped. Kesselman et al. give a tight analysis of Greedy as (2 − 2

α+1)-competitive for
the two-valued model [KLM+01, KLM+04]. Kesselman and Mansour propose another policy for a
related model of loss-bounded analysis [KM01, KM03]; those results, if converted to the throughput-
competitiveness, lead to a 1.544-competitive upper bound for any α (we discuss this conversion
shortly). Lotker and Patt-Shamir provide a policy with competitive ratio of 1 + 1√

α
+ O( 1

α) that is

4In the published result, Kesselman et al. present a slightly different construction and claim a lower bound of
max

(

B+αt

t+αt
,

α(B+t)
t+αB

)

, but that analysis seems to unfairly favor the adversary. The ratios that we present match those
of Englert [Eng08].
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never more than 1.304 for any α [LPS02, LPS03]. Englert and Westermann settle the two-valued
case, providing a deterministic policy with competitiveness that tends to 1.282 for large B and
never worse than 1.303 for any B [EW06, EW09]. Englert provides a slightly modified policy that
achieves optimality for any combination of α and B [Eng08].

The optimal policy of Englert and Westermann is rather simple in design [EW06, EW09].
Named the Account Strategy (ACC), it is defined for parameter x ≥ 1, where x represents
the desired competitiveness. It maintains an account a that amasses (x−1) units of credit for each
unit of value that is, or will be, transmitted by the switch. One unit of that credit can subsequently
be used to preempt a low-valued packet that reaches the front of the queue. Formally, a newly
released packet p is accepted if there is room in the buffer or if p is a high-valued packet that can
be added at the expense of the earliest low-valued packet in the buffer. If high-valued p has been
added to the buffer, account a is immediately increased by (x − 1) · α. Note that a high-valued
packet is never preempted, so its value is guaranteed; in contrast, a low-valued packet added to
the buffer is not guaranteed to be transmitted, so it cannot be immediately credited on its arrival.
After considering all new packets at a given time step, the strategy determines a packet to send.
So long as a ≥ 1 and a low-valued packet is at the front of the queue, that packet is preempted
and the account is decreased by 1. If a low-valued packet is eventually sent (presumably, when
a < 1), then the account is credited with x − 1 units as a reward for the transmitted value. As a
technical condition, the account is reset to 0 whenever the buffer becomes empty, or entirely filled
with high-valued packets. The analysis proceeds in regions defined by those events upon which
the account is reset. If a low-valued packet in the optimal solution is mistakenly preempted, the
unit of credit that allowed its preemption can be paired with 1

x−1 units of achieved value, tending

toward a competitive ratio of
(

1 + 1
x−1

)

/ 1
x−1 = x. Preempting more aggressively would put the

online strategy at risk of losing its competitiveness if nothing else were to arrive. The optimal
choice of x ≈ 1.282 stems from a balancing condition in the case when the online strategy later
rejects high-valued packets with its buffer full of other high-valued packets (that may have been
transmitted earlier in the optimal schedule).

We note that the earlier work of Kesselman and Mansour considered the competitiveness when
minimizing the value of dropped packets [KM01, KM03]. Although this measure is dual to through-
put maximization, competitive ratios are not the same for the two objectives (a distinction common
to most pairs of minimization and maximization problems). Kesselman and Mansour show that
for the minimization problem, the optimal deterministic policy is α-competitive, even for the two-
valued model. They introduce what they term loss-bounded analysis in which the lost value of
an online policy is compared relative to the loss of the offline optimal solution together with an
additive factor related to the throughput of a policy. In that context, they propose and analyze a
β-Preemptive Greedy policy that allows an accepted packet with value wp to immediately offset
the preemption of a leading subset of packets from the FIFO queue having combined value less than
or equal to wp/β. In this regard, it seems similar to the Englert and Westermann policy, but it is a
memoryless policy as the credit for a new large job cannot be saved for later use (the β-Preemptive
policy also has some similarity to the best-known policy for the general model, discussed shortly).
Kesselman and Mansour perform their loss-bounded analysis of this policy and show how to con-
vert that back to traditional throughput maximization bounds. In the conference version of their
work, the throughput-competitive bound for their policy is

√
α/(

√
α − 2). Choosing the better

of this policy and the standard Greedy policy leads to an upper bound that is at most 1.894
for any α. The improved analysis in the journal version of the paper shows that β-Preemptive
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deterministic randomized
upper lower upper lower citation comments

4 [MPSL00, MPSL04] Greedy
2 [KLM+01, KLM+04] Greedy (applies to m ≥ 1)

1.282 [KLM+01, KLM+04] Lower bound for two-valued system
1.414 [AMZ03, Zhu04]
1.419 [KMvS03, KMvS05]
1.434§ [AMZ03, Zhu04]

1.983 [KMvS03, KMvS05] Preemptive-Greedy (PG)
1.75 [BFK+04] Better analysis of (modified) PG

1.25† [BCC+04, CCF+06] implied from s-uniform model
1.75 [And05] Simple “comparison based” policy

1.732 [EW06, EW09] Better analysis of (modified) PG
§ For special case of B = 2, † For special case as B → ∞

Table 2: Bounds for the general-valued, preemptive FIFO model
(for m = 1 and any B, unless noted otherwise)

is (1 +
√

α)/
√

α-competitive; choosing the better of this policy and Greedy leads to an overall
upper bound of 1.544 for any α. Although this does not match the optimal 1.282-competitiveness,
it remains the best-known memoryless policy for the two-valued case.

General values

In contrast to the nonpreemptive model, it is possible to achieve constant competitiveness with
general-valued packets in the preemptive model. However, the precise constant remains unknown.
The complete progression of results for this model is summarized in Table 2. The strongest lower
bound for the general case is 1.419, as shown by Kesselman, Mansour, and van Stee [KMvS03,
KMvS05]. Their construction proceeds in phases, starting with B packets of value 1, and then a
series of packets of value (1 + ǫ), continuing until the policy dictates that one of the higher-valued
packets is to be sent. At that time, the adversary starts releasing a series of packets of value (1+ǫ)2,
until one of those is to be transmitted, continuing in such phases with a geometrically increasing
sequence of packet values. For any value of B, an adversary can terminate such a construction to
force competitiveness of 1.419 or higher. A slightly stronger lower bound of 1.434 is known for the
special case of B = 2 [AMZ03, Zhu04].

On the positive side, two deterministic policies have been successfully analyzed with general
values. The first of these is the Greedy policy, as discussed in the preceding discussion of the
two-valued case. Initial analysis by Mansour, Patt-Shamir, and Lapid shows that Greedy is at
worst 4-competitive with general values [MPSL00, MPSL04]. Kesselman et al. prove a tight bound
of 2-competitive, even for bandwidth m > 1 [KLM+01, KLM+04]. They provide a more detailed
analysis parameterized by the values of m, B, and α, and show that in the case of a tie when
preempting the lowest-valued packet, the best strategy is to drop the earliest of those packets. An
alternative proof of the 2-competitiveness, due to Kimbrel [Kim04b], is presented in Epstein and
van Stee’s survey on buffer management [EvS04].
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Kesselman, Mansour, and van Stee [KMvS03, KMvS05] introduce a policy named Preemptive-
Greedy (PG), not to be confused with the earlier β-Preemptive Greedy policy [KM01, KM03].
PG behaves similarly to Greedy, except that when a packet p with value wp arrives, the switch
immediately drops the earliest packet in the queue (if any) that has a value less than or equal
to wp/β (recall that the policy of [KM01, KM03] allowed for a group of packets with combined
weight wp/β to be preempted, but only from the front of the queue). Kesselman et al. show
that PG is 1.983-competitive with β = 15, and that for any setting of β, the policy is at best
φ ≈ 1.618-competitive. Bansal et al. consider a minor modification [BFK+04]. When choosing a
packet to preempt in the first step, they choose the first one in the queue that has a value both
less than wp/β and less than the packet immediately following it (if any). They prove that their
modified policy is 1.75-competitive for β ≥ 4. Englert and Westermann improve the analysis to
show that the modified PG is 1.732-competitive for β = 2 +

√
3, and that the policy is at best

1.707 for any choice of β [EW06, EW09].

Randomized Policies

We conclude this section by discussing the use of randomization in the preemptive FIFO model. For
the two-valued version of the problem, Andelman demonstrates that randomization can be used to
improve the competitiveness [And05]. While the optimal deterministic competitiveness is known to
be 1.282, Andelman presents a policy that is (1 + 1√

α
− 1

α) ≤ 1.25-competitive against an oblivious

adversary. He also presents a randomized lower bound of 1.197 against an oblivious adversary. His
Randomized Mark&Flush policy makes an a priori selection between two deterministic poli-
cies: Mark&Flush or GreedyHigh. The Mark&Flush policy, due to Lotker and Patt-Shamir
[LPS02, LPS03], is 1.304-competitive and was the best-known policy at the time Randomized
Mark&Flush was developed. The GreedyHigh policy is one that rejects all low-valued packets
and greedily executes high-valued packets.

For the general-valued case, Andelman presents another barely random policy that achieves a
competitive ratio of 1.75 against an oblivious adversary. While this bound is no better than what
was known at the time for the (deterministic) PG policy, the randomized policy is significantly
simpler. In particular, it is comparison based, as its behavior depends on the relative order of the
packets’ values but not on the actual values. The policy makes an a priori selection between one
of two deterministic policies: Greedy or HalfGreedy. The standard Greedy policy is already
known to be 2-competitive in the worst case. The HalfGreedy policy accepts new packets using
the greedy rule for dropping the least valuable in the case of overflow. In deciding what packet to
transmit, it relies on an online computation of the optimal solution. In the opening of Section 2,
we note that an optimal solution can be effectively computed while ignoring the FIFO requirement.
This computation can be done online by always buffering the B most valuable pending packets
and transmitting the most valuable among those. The HalfGreedy policy marks packets in its
current buffer that have already been sent by the non-FIFO optimal schedule. If the number of
marked packets is less than or equal to B

2 , it continues by sending the earliest packet in the buffer.
Otherwise, it sends the earliest of those marked packets (dropping all unmarked packets ahead
of it). While the 1.75-competitiveness of this randomized policy does not surpass the best-known
deterministic bound, there is much room for improvement; the strongest lower bound for this setting
is 1.25 (due to a similar bound on the s-uniform model introduced in the following section).
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3 Bounded-Delay Model

In this section, we consider a model in which each packet has an additional parameter specifying
the maximum delay that it can withstand in the switch. In particular a packet with span s
must be transmitted in one of the first s time slots after its arrival. As originally modeled by
Kesselman et al. [KLM+01, KLM+04], the switch is not constrained by a FIFO requirement and
there is no explicit constraint on the buffer capacity (subsequent papers have reintroduced a capacity
restriction; see Section 6.4). This bounded-delay model for a switch can be viewed as a classic
scheduling problem, namely that of maximizing the weighted throughput of unit-length jobs with
integral release times and deadlines. Using standard scheduling nomenclature, the bounded-delay
switch model with bandwidth m is equivalent to Pm | rj , pj = 1 | ∑

wj(1 − Uj). We note that the
offline version of this problem can be solved in polynomial time by reducing it to an instance of the
assignment problem, with each time-slot for each machine matched to a job that can be feasibly
scheduled at that time. To better understand the bounded-delay model, several restricted variants
have been considered.

• s-bounded

In this model, the switch has a priori knowledge that each packet’s span will be at most s.
This model is essentially the same as the general case, with the added possibility that a policy,
or its analysis, can be tuned based on knowledge of s.

• agreeable deadlines (a.k.a. similarly ordered)

In this model, packets’ inherent deadlines must be ordered consistently with their arrivals.
That is, if packet pj arrives after packet pi, then packet pj must have a deadline that is later
than or equal to that of pi.

It is worth noting that all 2-bounded instances have agreeable deadlines. Any previously
buffered packet in a 2-bounded setting must have imminent deadline, and therefore no later
than the deadline of a newly arriving packet.

• s-uniform

In this model, all packets must have a common span of s. As such, this is itself a special case
of agreeable deadlines. Kesselman et al. note that the optimal throughput for an s-uniform
instance is identical to that for the same arrival sequence in the FIFO model with buffer
size s [KLM+01, KLM+04]. As a consequence, any online policy that is c-competitive for the
FIFO model is trivially c-competitive for the s-uniform model, as no packets remain in the
buffer for more than s time-slots. The converse is not necessarily so, as an online policy for
the s-uniform model might send a high-value packet out of order, deferring the decision of
whether to transmit an earlier, lower-valued packet.

In addition to these restrictions on packet parameters, the achievable competitiveness may depend
on further restrictions placed upon an online policy. In particular, an online policy is memoryless
if each decision that it makes is based solely on the set of pending packets at that time, and scale-
invariant if its behavior on instance I is the same as on an instance I ′ with identical structure but
packet values that are scaled by a positive constant. Table 3 summarizes the history of research
for the various combinations of conditions. We discuss the most significant of those results in the
remainder of this section.

ACM SIGACT News 9 March 2010 Vol. 41, No. 1



deterministic randomized
restriction upper lower upper lower citation

General 2§† Greedy [Haj01, KLM+01, KLM+04]
1.582§¶ RMix [BCC+04, CCF+06]

1.939 GenFlag [CJST04, CJST07]
1.854 DPφ [LSS07]
1.893§ [EW07]
1.828 [EW07]

1.618 1.25 implied from 2-bounded model
1.33¶ implied from 2-bounded model

s-bounded 2− 2
s +o(1

s )§ EDF1/λs
[BCC+04, CCF+06]

4-bounded 1.732§ EDF√
3 [BCC+04, CCF+06]

3-bounded 1.618§ EDFφ−1 [BCC+04, CCF+06]

2-bounded 1.618§† β-EDF [KLM+01, KLM+04]
1.17† [KLM+01, KLM+04]
1.414 [KLM+01, KLM+04]
1.618 [Haj01, AMZ03, CF03]

1.25 [CF03]
1.25§ R2b [BCC+04, CCF+06]

1.33¶ [BCJ08]
1.33§¶ Rand [BCJ08]

agreeable 1.618 1.25 implied from 2-bounded model
deadlines 1.33¶ implied from 2-bounded model

1.838 SimFlag [CJST04, CJST07]
1.618§∗ MG [LSS05]

1.33§ RG [Jeż10]

s-uniform 1.618§ 1.33§ implied from agreeable deadlines
1.377 implied from 2-uniform case

1.25 limit as s → ∞ [CCF+06]

2-uniform 1.434§ β-EDF [KLM+01, KLM+04]
1.11† [KLM+01, KLM+04]
1.25 [KLM+01, KLM+04]

1.414§ [AMZ03, Zhu04]
1.366 [AMZ03, Zhu04]
1.414§ 1.17 [BCC+04, CCF+06]

1.377 Switch [CJST04, CJST07]
1.377 [CJST04, CJST07]

1.2¶ [BCJ08]
1.25§ implied from 2-bounded
1.33§¶ implied from 2-bounded

§ restricted to memoryless, scale-invariant policies
† applies for general m
∗ applies for any buffer size B
¶ versus adaptive adversary

Table 3: Progress for the bounded-delay model with m = 1
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3.1 Lower Bounds

The strongest known lower bounds for the general model are all proven within the far more restricted
domain of 2-bounded instances. That model suffices to present the quintessential dilemma for an
online policy, the choice between a lower-valued packet with imminent deadline and a higher-valued
packet with later deadline. No online policy can be strictly better than φ ≈ 1.618-competitive for the
2-bounded model [Haj01, AMZ03, CF03]; we discuss the lower bound construction in more detail in
the following paragraph. The lower bound is known to be tight for the 2-bounded model [KLM+01,
KLM+04] and the more general agreeable deadline model [LSS05]. It remains the strongest known
lower bound for the general model. Similar techniques have been used to prove randomized lower
bounds for the 2-bounded model of 1.25 versus an oblivious adversary [CF03], and 1.33 versus
an adaptive adversary [BCJ08]. These bounds are also known to be tight for the 2-bounded
case [BCC+04, CCF+06, BCJ08], and they remain the strongest known lower bounds for the most
general case.

To present the deterministic lower bound of φ, we adopt the notation of Chin and Fung [CF03].
For arbitrarily small ǫ and arbitrarily large n, they define a sequence of increasing values for
0 ≤ i ≤ n with vi = (1 − ǫ)φi + ǫ(φ + 1)i > φi. Starting with time t = 0, an adversary releases two
packets at time t, one with value vt and span 1, and the other with value vt+1 and span 2. This
continues so long as the online policy chooses to transmit the lower-valued of the available packets
(i.e., that with value vt at time t). If the policy ever dictates that the higher-valued packet would
be sent, the construction is terminated. To ensure a finite instance, the construction terminates
at time n with the release of a single packet with value vn and span 1. The analysis considers
three cases. If an online policy dictates that the larger-valued packet be sent at time 0, then the
competitive ratio is at least v0+v1

v1
= 1+φ+ǫ

φ+ǫ > φ − ǫ. If the policy were to transmit the larger
available packet for the first time at t ≥ 1, the switch will have transmitted values v0 + · · · + vt−1

prior to time t, and vt+1 at time t. In contrast, the optimal solution for this instance will be to send
values v1 + · · · + vt prior to time t, followed by both vt and vt+1. This leads to a competitive ratio
of at least v1+···+vt+vt+vt+1

v0+···+vt−1+vt+1
. The chosen values telescope in a way that ensures that this ratio is at

least φ − ǫ. The final case to consider is when the policy never chooses the larger-valued packet
and the construction ends at time n, in which case the ratio is v1+···+vn+vn

v0+···+vn−1+vn
→ φ as n → ∞.

Chin and Fung use a similar approach to produce the randomized lower bound of 1.25 versus an
oblivious adversary [CF03]. Rather than releasing packets with values near φt and φt+1 at time t,
they use values 2t and 2t+1 respectively. They apply Yao’s principle to prove a randomized lower
bound against an oblivious adversary, by proving a similar deterministic lower bound against a
random distribution of instances. Specifically, they build a random distribution including the n+ 1
instances that result when terminating the arrival sequence at times 0, . . . , n. The instance ending
at time t is chosen with probability 2−(t+1) for t < n and 2−n for t = n. For this distribution,
any deterministic policy will have expected value at most 2n + 1, while the expected value of Opt
is 5n

2 + 1. For arbitrarily large n, this provides the lower bound of 5
4 . The lower bound of 1.33

against an adaptive adversary uses a similar style of construction, but with the adaptive adversary
intentionally making decisions that are more likely to differentiate its behavior from that of the
randomized online policy.

The other interesting set of lower bounds are those for the 2-uniform case. Note that the
2-bounded constructions do not apply to the uniform setting, as they require some packets with
span 1 and some with span 2. A similar dilemma can be forced by releasing two packets and
allowing the switch to transmit one. At the next time step, one additional packet can be released,

ACM SIGACT News 11 March 2010 Vol. 41, No. 1



at which point the old packet has remaining span 1 and the new one span 2. But the correspond-
ing lower bounds are weaker due to the additional packet sent in the first step. The first polices
considered for the 2-uniform problem were all memoryless and scale-invariant, with the best being
a
√

2 ≈ 1.414-competitive policy of Andelman, Mansour, and Zhu [AMZ03, Zhu04]. At that time,
there remained a gap between that result and the strongest lower bound. Chin et al. provide a
construction that shows that

√
2 is indeed the best possible deterministic competitiveness for poli-

cies that are memoryless and scale-invariant [BCC+04, CCF+06]. Their lower bound construction
relies on forcing some settings that are scaled versions of a previous choice made by the policy, and
therefore with predictable outcomes. Without the extra requirements, Chrobak et al. prove that the
deterministic competitiveness is 1.377, demonstrating a lower bound and matching (memory-based)
policy [CJST04, CJST07].

3.2 Upper Bounds

In this section, we describe several policies for the bounded-delay model, highlighting a few common
themes. Most policies are defined in a way that ensures that each transmitted packet p is the earliest-
deadline pending packet having value greater than or equal to wp; an exchange argument shows
that if there were another pending packet q with earlier deadline and at least as great a value, then q
could be transmitted in lieu of p without loss of generality. Commonly, policies compare the merits
of transmitting earliest-deadline packet e (in case of tie, the heaviest of the early packets) relative
to the heaviest-valued packet h (in case of tie, the earliest of the heavy packets). Some policies
base their immediate decision at a given time on the maximum-weight feasible subset of pending
packets (the so called, optimal provisional schedule). For these policies, e is typically defined to
be the earliest-deadline packet from the provisional subset (as opposed to the full set); heaviest h
always belongs to the optimal provisional schedule.

Agreeable Deadlines

We begin by examining a deterministic policy of Li, Sethuraman, and Stein that achieves optimal
competitiveness of φ ≈ 1.618 for the case of agreeable deadlines [LSS05]. Intuitively, the policy
strikes a balance between scheduling the most valuable packet (regardless of deadline) and an early-
deadline packet (so long as its value is reasonable). Formally, their Modified Greedy (MG) policy
is defined for a model in which the buffer is bounded by size B (although B can be arbitrarily
large in general). At each time step, it computes the optimal provisional schedule for the given
buffer size, and then considers the earliest-deadline e and the heaviest-valued h from that subset.
If we ≥ wh/φ, e is sent; otherwise, the earliest-deadline packet f satisfying wf ≥ max(φwe, wh/φ)
is sent. The analysis technique is novel. It considers each action of MG relative to an Opt-like
adversary, but after each time-step it artificially modifies the adversary’s buffer to match that of
MG. This is done while guaranteeing that the modifications to the buffer do not disadvantage the
adversary, or else by awarding artificial value to the adversary as compensation.

Jeż [Jeż10] provides a simplification to MG that sends heaviest h (rather than defined f) in
the case when we < wh/φ. Similar analysis shows that it remains φ-competitive. Jeż also provides
a new randomized policy that is 1.33-competitive against an oblivious adversary. This Random
Greedy (RG) policy is similar to MG, but rather than choose deterministically between e and h,
it transmits e with probability we

wh
, and h otherwise. The 4

3 -competitive analysis uses the same
technique, manipulating an adversary’s buffer after each step to force it to a similar state as the
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random RG. This analysis requires an assumption at times that the adversary schedules its pending
packets in EDF order. For this reason, the analysis only applies to an oblivious adversary, as an
adaptive adversary cannot be restricted in such fashion.

General Model

For the general model, the Greedy policy that always transmits the most valuable pending packet
is 2-competitive [Haj01, KLM+01, KLM+04]. The proof can be shown with a standard charging
scheme and the analysis is tight. There has been a progression of results improving on this upper
bound, but there remains a gap between the 1.618 lower bound.

The first deterministic policy to break the 2-competitive barrier for the general case is GenFlag,
by Chrobak et al. [CJST04, CJST07]. This always sends either the earliest-deadline e or heaviest-
valued h, without restricting consideration to the optimal provisional schedule. The policy relies
on one bit of memory about the previous time step to determine the policy for the current step.
They prove that a tuned version of the policy is 64

33 ≈ 1.939-competitive.
Li, Sethuraman, and Stein provide a 1.854-competitive policy named DP [LSS07]. Its origin

stems from the authors’ MG policy for agreeable deadlines [LSS05]. Both policies compute the
optimal provisional schedule and consider sending the earliest deadline packet e from that set, or
else some packet f with weight meeting a threshold condition relative to the heaviest packet h. The
hallmark feature of DP is the introduction of dummy packets into the buffer to encode relevant
information about the past. Those dummy packets are never sent, but are used to influence the
decision making process. In particular, whenever it sends a packet f other than e or h, a dummy
packet h′ is generated and paired with the real h. This dummy packet is given weight wh/α for
parameter α, and deadline df . Furthermore, a status bit is set for the real h that has the effect
of artificially reducing its value to wh/α. This makes h less likely to be considered the “heaviest”
packet in future steps, yet if it is chosen as h again, it is automatically sent. If the policy ever
chooses an f that is a dummy packet, its corresponding real packet will be sent. The authors
prove that DP has competitive ratio upper bounded by max{α, α+1

α , 3
α , 3α

α+1}. This expression is
minimized at 3/φ ≈ 1.854 by setting α = φ. This analysis is not believed to be tight; the worst
known example for DP forces a competitive ratio of 1.764.

Englert and Westermann’s 1.828-competitive deterministic policy is the best to date [EW07].
They begin by providing a 1.893-competitive memoryless policy, the only such policy known to be
better than 2-competitive. As an initial step, they show that in the restricted two-valued case,
a memoryless policy can achieve optimal competitiveness of

√
2. For the general-valued case, the

authors introduce the concept of suppressed packets as follows. Consider an optimal provisional
schedule. For each packet p of that schedule, consider what would happen if p were transmitted
next and the remaining provisional schedule recomputed. If there exists a packet p′ that is not in
the original provisional schedule, but is contained in the recomputed scheduled, that p′ is being
suppressed by p. If p were to be considered as the “heaviest” packet and transmitted in lieu of some
earlier-deadline packet, not only would the switch receive the benefit of wp but perhaps a future
benefit due to the increased value of the remaining provisional schedule containing suppressed p′.
With this in mind, when choosing the role of the “heaviest” packet, the policy considers for each
p the sum wp + 1

2wp′ . The packet that maximizes this expression is denoted as h. The earliest
deadline packet e from the provisional schedule is sent when we ≥ 1

β (wh +
w

h′

2 ) where h′ is the
packet suppressed by h, and β is a parameter of the policy; otherwise h is sent. The proof of
1.893-competitiveness relies on a detailed case analysis.
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The better variant of Englert and Westermann’s policy considers levels of the provisional optimal
schedule that are delimited by tight packets in the schedule (those sent precisely at their deadline).
For each level, the policy computes the amortized value δ that would be sent per time-step if
the provisional schedule were to be followed until that tight deadline. The largest of these amor-
tized constants is maintained from the preceding time-step, hence the use of memory. To achieve
1.828-competitiveness, they increase the contribution of suppressed packets when choosing h, and
use the level-based amortizations when deciding whether to transmit e or h.

The best known randomized policy is RMix by Chin et al. [BCC+04, CCF+06]. This simple
policy picks a real x ∈ [−1, 0] uniformly at random at each step, and transmits the earliest-deadline
packet p with wp ≥ ex · wh where h is the heaviest currently pending packet. The original anal-
ysis uses a potential function to show that RMix is e

e−1 ≈ 1.582-competitive against an oblivious
adversary. Jeż [Jeż09a] proves the same competitiveness against an adaptive adversary, using an
analysis in which the adversary’s buffer is manipulated to match that of the online policy (akin to
Li, Sethuraman, and Stein’s analysis of MG [LSS05]).

4 Multiple Input/Output Models

The basic FIFO model from Section 2 applies to a switch with a single output port, or a multi-port
switch in which each output port has its own dedicated buffer with capacity B. In this section, we
look at several other models for multi-port switches.

4.1 Multiple Output Queues with Shared Memory

In this section, we consider an N × N switch in which there is a FIFO queue associated with each
output port and a constraint that the combined size of those buffers is at most B. It is presumed
that the internal switch fabric has speedup N , so that all packets received in the input ports can
immediately be buffered in the output queues. At the end of each time-step, one packet is sent
from the front of each nonempty output queue. In a nonpreemptive variant of the problem, once
a packet is added to an output queue, it must be sent; in a preemptive variant of the problem,
existing packets can be dropped from an output queue as desired. Both versions of the problem
have been studied, but only for the restricted case in which all packets have unit value.

For the preemptive version, a common queuing policy is Longest Queue Drop (LQD). If the
combined buffer space is not yet full, an incoming packet is accepted. If the combined buffer is
full, the packet is tentatively accepted and then a packet (possibly the newest) is dropped from
the back of whichever queue is the longest. Hahne, Kesselman, and Mansour prove that LQD has
competitiveness somewhere between 2 and

√
2 [HKM01, AKM08]. They also provide a general lower

bound of 4
3 for the deterministic competitiveness with N = 2. Kobayashi, Miyazaki, and Okabe

match this lower bound for N = 2 and large B, showing that LQD is 4B−4
3B−2 -competitive [KMO07].

They also provide an improved analysis of 2 − o(1) for the performance of LQD for large B.
Kesselman and Mansour study the nonpreemptive version with unit values [KM02, KM04]. They

show that it is impossible to achieve constant competitiveness in this model, but achieve positive
results with resource augmentation, comparing the performance of their policy with buffer capacity
B′ > B to the optimal performance with buffer capacity B. We discuss those results in Section 5.

There does not appear to be a study of this model using general-valued packets. However, the
standard classify-and-randomly-select technique [ABFR94] can transform any c-competitive policy
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for the unit-valued case to a randomized 2c-competitive policy for the two-valued case or to a
randomized O(c log α)-competitive policy for general values in the range [1, α].

4.2 Multiple Input Queues

Azar and Richter consider a model for an N × 1 switch with each input queue having an inde-
pendent FIFO buffer of size B [AR03, AR05]. At each time-step, the internal switch fabric can
transfer one packet from a chosen input queue to the output port (thus the internal switch fabric
has speedup S = 1). Such a model had earlier been studied without an explicit bound on the
buffer capacity, but with a goal of minimizing the maximum buffer size while delivering all pack-
ets [BFLN02, BFLN03]. Returning to the goal of maximizing throughput with fixed buffers, there
are two algorithmic considerations: admission control into the queues and a scheduling policy deter-
mining from which queue the next output packet is drawn. As a result, this problem is interesting
even when all packets have unit value (a case that is trivially solvable in the single-queue model).

The overwhelming majority of research on this model has focused on the unit-valued case,
with competitive bounds depending on the choice of B and N . Albers and Jacobs undertake an
experimental evaluation of many of the following policies [AJ07, AJ10]. We note that with unit
values, there is never a reason to preempt one packet in favor of another. The primary issue becomes
the choice from which queue to transmit. For the deterministic case, Azar and Richter show that
any work-conserving policy is 2-competitive, and that no deterministic policy can be better than
(

2 − 1
N

)

-competitive for B = 1 or (1.366 − Θ(1/N))-competitive for arbitrary B [AR03, AR05].

Albers and Schmidt show that a natural greedy policy in which a packet is always sent from
the longest queue is no better than 2 − 1

B -competitive for N ≫ B, regardless of how ties are
broken [AS04, AS05]. They provide a different policy named SemiGreedy that is 1.889-competitive
for any B with N ≫ B, and optimally 1.857-competitive for B = 2. They also strengthen the
deterministic lower bound to e

e−1 ≈ 1.582 for any B if N ≫ B. Azar and Litichevskey achieves this
bound for large B, providing a deterministic policy with a ratio that tends to e

e−1 [AL04, AL06b].
If randomization is allowed, Azar and Richter provide a e

e−1 ≈ 1.582-competitive policy for
B > log N , and a lower bound of (1.46 − Θ(1/N)) for B = 1 [AR03, AR05]. Albers and Schmidt
strengthen the lower bound to 1.466 for any B and large N , and 1.231 for N = 2 [AS04, AS05].
Schmidt provides a randomized policy that is 1.5-competitive for any B and N , and he improves
upon some bounds for the case of N = 2 [Sch05]. The optimal competitiveness of 1.231 for N = 2
is achieved for any B by Bienkowski and Ma̧dry [BM08].

With general packet values in [1, α], the seminal work of Azar and Richter includes a meta-
policy that can be used to turn any c-competitive policy for a standard single-queue FIFO model
into a 2c-competitive policy for the respective multi-queue model [AR03, AR05]. For exam-
ple, in the general-valued, nonpreemptive case the single-queue (2 + ln(α))-competitive policy
for large B [AM03] can be converted to a (4 + 2 ln(α))-competitive policy for the corresponding
multi-queue model. Kobayashi, Miyazaki, and Okabe provide a different meta-policy that con-
verts a c-competitive result for the unit-valued, multi-queue model to a policy for the two-valued,

multi-queue model with competitiveness at most min(αc, αc(2−c)+c2−2c+2
α(2−c)+c−1 ) [KMO09]. Applying this

framework with known results for unit-valued models allows them to improve many bounds for the
two-valued system; see Table 1 of that paper for a summary of current results. Finally, a few poli-
cies have been developed directly for the general-valued, preemptive multi-queue model. Azar and
Richter provide a deterministic 3-competitive policy named TransmitLargestHead (TLH) which
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greedily buffers the B most valuable packets at each input port and transmits the packet that is
the highest-value of those currently at the head of a buffer [AR04b]. Itoh and Takahashi improve
the analysis for TLH to show (3 − 1

α)-competitiveness [IT06].

4.3 Combined Input and Output Queued (CIOQ) Switches

An N × N CIOQ switch has buffer space available at each input port and each output port. In
a typical model, each buffer has a fixed capacity, but not all buffers have the same capacity. The
internal fabric of a switch is responsible for transferring packets from the input ports to the output
ports. A switch with speedup S proceeds with S internal transfer cycles per one external time-step,
with a limitation that each input queue releases at most one packet and each output queue accepts
at most one packet during a single transfer cycle. Figure 2 contains a diagram of a CIOQ switch.

Internal Fabric

Input Ports Output Ports

Figure 2: Schematic of a CIOQ switch

Commonly, virtual output queuing (VOQ) is used whereby each input port maintains N inde-
pendent buffers, one dedicated to each output port. For example queue V OQi,j holds packets that
arrive at input port i, waiting to be transferred to output port j. Each virtual queue must obey
FIFO semantics, but packets arriving at an input port that are destined for distinct output ports
may proceed through the switch in any order.

Kesselman and Rosén were the first to consider competitiveness of switching policies for the
CIOQ models [KR03, KR06]. For the case of unit-valued packets, they provide a nonpreemptive
switch policy with VOQ that is 3-competitive for any speedup, and 2-competitive for S = 1. For the
case where there are up to k distinct packet values in the range [1, α], they provide two preemptive
policies with VOQ that are respectively 4S-competitive and 8 min(k, 2 log α)-competitive. Azar
and Richter improve on these results, proving constant competitive bounds for arbitrary speedup
and packet values using VOQ. Specifically, they propose a deterministic policy β-PG (Preemptive
Greedy) and show that it is 8-competitive for parameter β = 3 [AR04a, AR06]. Kesselman, Kogan,
and Segal improve that analysis, showing that β-PG is at most 7.5-competitive for β = 3 and at
most 7.47-competitive for β = 2.8 [KKS08b]. Kesselman and Rosén also consider CIOQ switches
with Priority Queuing (PQ) buffers that transmit the packet of highest value at a given step,
providing a 6-competitive policy for any speedup [KR08].

4.4 Crossbar Switches

The internal fabric of a switch can be implemented using a crossbar architecture, as shown in
Figure 3. This supports non-blocking communication during an internal transfer cycle for any
valid matching between input and output ports. Furthermore, a buffered crossbar switch contains
additional dedicated buffers at every junction between input port i and output port j.
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Output Ports

Internal Fabric

Input Ports

Figure 3: Schematic of a buffered crossbar switch

A competitive analysis in this model has been undertaken by Kesselman, Kogan, and Se-
gal. They propose a 4-competitive policy for the case of unit-sized, unit-valued packets with
FIFO buffers, and an 18-competitive policy for general-valued packets but with Priority Queu-
ing [KKS08a]. For the FIFO case, they also present a nonpreemptive 7-competitive switch policy
for the case of variable-length packets that have uniform value density (that is, a packet’s value is
proportional to its size), and a preemptive 21-competitive policy for unit-sized packets with general
values [KKS08c]. These bounds hold for arbitrary speedup.

4.5 Multiple Output Ports with Reconfiguration Penalty

Azar et al. [AFG+09] introduce a model for a switch with N output ports, such that the switch is
only able to transmit a single packet per time-step (rather than one packet per port). They assume
that there is a currently “active” output port that can transmit packets, and that there is a certain
amount of reconfiguration time required to change to a different port (one unit of idle time, in their
model). There is no explicit buffer constraint on the switch, but packets have deadlines by which
they must be transmitted or dropped (i.e., the bounded-delay model).

Azar et al. consider unit-valued packets. They show that the offline case is NP-hard, even for the

s-uniform model, and they provide a deterministic, online policy that is

(

1

1−4
√

N/s

)

-competitive

where s is the minimum span of all packets (i.e., dp − rp ≥ s for all p). They note that for s ≫ N
this ratio approaches 1. In contrast, they provide a lower bound on the competitiveness of any
policy (even with randomization) of 16

15 for s ≤ 2N , and more generally 1/(1 − N
8s).

5 Resource Augmentation

In this section, we review the use of resource augmentation in the models surveyed in Sections 2–4.
For the FIFO model of Section 2, Kim considers augmenting an online policy with increased trans-
mission rate as well as a larger buffer [Kim04a]. He examines the necessary and sufficient aug-
mentations to allow an online policy to be optimal (i.e., 1-competitive). For the nonpreemptive
two-valued model, a buffer of size 2B can be used to guarantee optimality (by reserving half of the
capacity for high-valued packets, and half for low-valued packets). Even with an arbitrary increase
in bandwidth, any policy requires a buffer of size at least (2 − 1

α)B to guarantee optimality, and
that the bandwidth must be at least 2-fold more than the offline when using a buffer of precisely
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that size. He provides a policy matching this buffer size with speed 2. For the nonpreemptive
general-valued case, he provides an optimal policy using a speedup of 2(⌊log α⌋+ 1) and a buffer of
size 2(⌊log α⌋ + 1)B. Finally, for the preemptive general-valued case, he proves that the standard
Greedy policy is optimal if augmented with any speedup s ≥ 2 and a buffer of size s

s−1B.
Jeżabek considers resource augmentation for the bounded-delay model of Section 3, examining

the effect of an online policy with bandwidth m versus the offline with bandwidth 1 [Jeż09b]. He
shows that for any constant m, it is impossible to be 1-competitive with bandwidth m, and he
provides an online policy that is (1 + 1

2m−1)-competitive for any m. In recent (unpublished) work,
he shows that with agreeable deadlines, there exists a 1-competitive policy for m = 2 [Jeż09c].

For the multi-output switch with shared memory, as described in Section 4.1, Kesselman and
Mansour provide the following results [KM02, KM04]. They allow their policy a buffer capacity of
B(ln(N)+1) and describe a Harmonic policy in which the largest k current queues are restricted to
using at most Hk

ln(N)+1 ·B cumulative buffer space where Hk is the kth harmonic number. An arriving
packet is accepted so long as these constraints remain valid for all k. They prove the Harmonic
policy to be 2-competitive versus an offline policy with buffer capacity B. They generalize this to
a Parametric Harmonic policy that achieves c-competitiveness using a buffer of size B logc N .
Finally, they show that it is impossible to be c-competitive with a buffer size less than B log2c N

2c .
For the multi-input FIFO model as described in Section 4.2, Albers and Schmidt [AS04, AS05]

consider resource augmentation. If each input port is allowed a FIFO buffer of size (1 + c)B, any
greedy policy becomes c+2

c+1 -competitive (versus the optimal solution with a single buffer B). If
an online policy were allowed to transmit m packets per time-step, they show it is possible to be
(1 + 1

m)-competitive versus the offline optimal that transmits one packet per time-step.

6 Closely Related Models

In this section, we describe several models related to buffer management that have been introduced
in recent years. Perhaps the most significant of these, described in Section 6.1, is a SODA 2009
paper of Bienkowski et al. that generalizes the bounded-delay model. In Section 6.2, we discuss a
SODA 2008 paper of Fiat, Mansour, and Nadav which introduces a model in which the value of
packets degrades over time.

6.1 Collecting Weighted Items from a Queue

Bienkowski et al. introduce the following generalization of the bounded-delay buffer management
problem [BCD+09]. There exists an ordered queue of weighted items. At each time step, some
number of packets may expire from the front of the queue while other items may arrive at arbitrary
locations. After that, an online agent is given a chance to collect one item taken anywhere from the
queue. The agent has no a priori knowledge of when events will occur and the goal is to maximize
the total weight of the collected items. They also consider a special case of a FIFO queue in which
all new arrivals enter at the back of the queue.

The proposed model generalizes the bounded-delay problem in the following way. The queue
represents the currently pending packets, ordered according to deadline. Therefore, the items at
the front are the first to expire, while new arrivals may generally be placed in arbitrary locations
(depending upon the relative deadlines). The special case of the FIFO queue corresponds to the
agreeable deadlines version of the bounded-delay model, as a newly arriving packet must have the
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greatest deadline. Because of the correspondence, this paper provides great insight on the status
of the bounded-delay model. In the original bounded-delay model, policies often consider pending
packets’ deadlines when making a decision (e.g., computing an optimal provisional schedule). In
the new model, the queue provides implicit knowledge of the relative order of the deadlines for
pending items, but knowledge of an item’s actual deadline becomes apparent only after it expires.

It can trivially be shown that a Greedy policy is 2-competitive for this new model, and the
1.618-competitive lower bound for the buffer management problem applies. The authors give a
stronger lower bound of 1.633 for the new problem. This new lower bound is shown for a very
restricted decremental case in which all items arrive at the onset of the game and the only unknowns
are the implicit deadlines of the items.

The authors provide a 1.89-competitive policy PrudentMark and show that their analysis is
essentially tight. While this policy is not quite as good as the best-known 1.828-competitive policy
for the bounded-delay model [EW07], it must operate with the more limited knowledge afforded
by the new model. For the FIFO queue model, they provide a 1.737-competitive policy (in place
of the 1.618-competitive policy for the bounded-delay model with agreeable deadlines).

Another very interesting result concerns a special case of nondecreasing weights, in which the
weights of arriving items are nondecreasing. For this case, they provide a φ-competitive MarkAnd-
Pick policy. This is an optimal result, as the existing buffer management lower bounds satisfy this
nondecreasing weight property. This implies that if a stronger lower bound exists for the buffer
management problem, it must rely on a construction that is not nondecreasing.

Finally, they consider memoryless policies which make decisions based only on the configu-
ration of the current queue (as opposed to past expirations). For this restriction, they show
a deterministic lower bound of 2, matching the upper bound of Greedy. They also claim an
adaptive-adversary randomized lower bound of 1.582 for memoryless policies, which is met by the
RMix policy [BCC+04, CCF+06, Jeż09a], adapted for the weighted queue collection problem.

6.2 Latency-Sensitive FIFO Model

Fiat, Mansour, and Nadav introduce a nonpreemptive FIFO model in which there is no explicit
limit on the buffer capacity, yet for which each buffered packet loses a unit of value for each time-
step that it spends in the buffer [FMN08]. If all packets have the same initial value R, they provide
a deterministic 1.618-competitive policy which is matched by a randomized lower bound of 1.618.
Their policy uses a simple threshold, stating that a newly arriving packet is accepted into the buffer
so long as the current size of the buffer is at most R/φ2.

When packets have general values, they provide a memoryless deterministic policy DT based
on the use of a doubling threshold. A new packet is accepted if its value is at least twice the current
buffer size. They show that this policy is 5.25-competitive and that this analysis is tight. They pair
this result with a deterministic lower bound of 3, and a deterministic memoryless lower bound of
4.1. They provide a more complex policy IT based on what they denote as incremental thresholds.
An IT policy is defined by a sequence of values a0, a1, a2, . . . such that a packet is accepted into
the queue if its value is at least aB · B for current buffer size of B (in contrast to the doubling
threshold, for which aB = 2 for all B). They show that a sequence of ai values can be constructed
leading to a competitiveness that can be made arbitrarily close to 4.9. They conjecture that the
optimal competitiveness for a deterministic, memoryless policy is φ3 ≈ 4.23, and that there exists
some sequence of ai values such that IT achieves this ratio.
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6.3 Packet Dependencies

Kesselman, Patt-Shamir, and Scalosub introduce the following variant of the single-buffer FIFO
model, motivated by the fact that individual network packets often belong to a larger data con-
text [KPSS09]. They assume that each packet identifies a data frame to which it belongs, and
that packets of a frame are only useful if sufficiently many of them are delivered. Formally, they
define the k-of-n frame throughput maximization problem (denoted as k-of-n FTM), in which the
switching policy is only rewarded for frames that have at least k of their n packets transmitted.
The goal is to maximize the number of successfully transmitted frames (as opposed to packets).
They focus primarily on the special case where k = n and denote this as k-FTM.

For the offline version of k-FTM, they show that a simple algorithm produces a (k + 1)-
approximation for any buffer size, but that producing an o(k/ ln k)-approximation is NP-hard for
k ≥ 3 and B = 1 due to a reduction to k-dimensional matching.

For the online version of k-FTM, they show that it is impossible to have bounded competitive-
ness, even for k = 2. For this reason, they consider a restriction that instances be what they term
order-respecting. This means that the frames can be linearly ordered in such a way that if frame i
is before frame i′ in this order, than the jth packet of frame i must arrive before the jth packet of
frame i′ for all 1 ≤ j ≤ n. For this restricted version, they provide a nonpreemptive, deterministic
policy that is O(k2)-competitive, and a lower bound of Ω(k) against the competitiveness of any
deterministic policy (preemptive or nonpreemptive). They have limited results for the more general
k-of-n FTM problem, but are able to relate the offline approximability of this problem with B = 1
and k near 1 or n, to the (k+1)-FTM problem. They conclude with a discussion of open questions.

6.4 Bounded-Delay Model with Maximum Buffer Requirement

The original bounded-delay model of Section 3, as defined by Kesselman et al. [KLM+01, KLM+04],
does not have an explicit bound on the capacity of the buffer. However, it is natural to con-
sider a model with individual packet deadlines and capacity constraints for a buffer. For exam-
ple, the 1.618-competitive policy for agreeable deadlines by Li, Sethuraman, and Stein [LSS05]
is described in a model with a fixed sized buffer. Li considers the more general bounded-delay
model including a constraint that at most B packets can be buffered at any time [Li09a]. He
provides a deterministic, memoryless 3-competitive online policy and a randomized, memoryless
φ2 ≈ 2.618-competitive policy. Fung improves on this by providing a 2-competitive deterministic
policy named GreedyQueue (GRQ) [Fun09]. Subsequently, Li tightens the analysis of his deter-
ministic policy to be 2-competitive as well, and provides a lower bound of 2− 1

B for a class of policies
that are based on always sending a packet that belongs to the optimal provisional schedule [Li09c].

Azar and Levy consider a variant of the multi-input switch described in Section 4.2, in which
there are individual packet deadlines and buffer capacities [AL06a]. The greedy policy is not
constant competitive for this model. For the nonpreemptive model, they provide a 2-competitive
deterministic policy for unit values, and a randomized policy which is O(log α)-competitive for
general values. In the preemptive case, Azar and Levy provide a 9.82-competitive deterministic
policy for general values. Li improves on this bound, providing a 4.723-competitive deterministic
policy, and a lower bound of 2 for the problem [Li09b].
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7 Open Questions

Buffer management problems remain a rich domain for future research. We conclude by highlighting
some of the most significant open problems.

• FIFO Model

– For the general-valued preemptive model, the best-known deterministic upper bound is
1.732, achieved by PG [EW06, EW09]. The best-known lower bound is 1.419 [KMvS03,
KMvS05].

– For the general-valued preemptive model, does randomization help? At one point in time,
the 1.75-competitive random policy of [And05] equaled the best known deterministic
bound for the problem, but that has since been surpassed. The strongest lower bound,
due to a reduction from the s-uniform model, is 1.25 for an oblivious adversary.

– What is the impact of memory in the FIFO model? For the two-valued case, the optimal
1.282-competitive Account Strategy of [EW06, EW09] requires memory in the form
of its account, while the best known memoryless policy is 1.544-competitive [KM03], as
described in Section 2.2.

For the general-valued case, both the Greedy and PG policies are memoryless. Can
better policies be developed that use memory? Can stronger lower bounds be proven for
memoryless policies?

• Bounded Delay Model

– The most significant issue is to narrow the gap for the general version of this model.
There is currently a deterministic upper bound of 1.828 [EW07] versus the lower bound
of 1.618 [Haj01, AMZ03, CF03].

– One approach to narrowing the general gap is to focus on the s-bounded case. It is
known that 1.618 is the optimal deterministic competitiveness for both the 2-bounded
and 3-bounded cases. For the 4-bounded case, there remains a gap between the upper
bound of 1.732 from [BCC+04, CCF+06] and the 1.618 lower bound.

– There remains a large gap for the deterministic competitiveness of the s-uniform model
The best upper bound is the 1.618-competitive MG policy for the more general agreeable
deadline case [LSS05]. The strongest lower bound of 1.377 comes from the special case
of the 2-uniform model.

– As a warm-up to settling the gap for the general s-uniform case, what can be said about
the two-valued version of that problem? The 1.282-competitive policy for the FIFO
model applies to this case, but the matching FIFO lower bound does not apply (high-
value packets can be scheduled without necessarily dropping earlier low-value packets).

– The 1.582-competitive randomized RMix [BCC+04, CCF+06] is currently the best
known policy for the general case. This is opposite a lower bound of 1.33 against a
randomized adaptive adversary.
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• Multi-Queue Models

– Section 4.1 describes the model for multiple output queues with shared memory. For the
preemptive version of that problem, Hahne, Kesselman, and Mansour prove that LQD
has competitiveness somewhere between 2 and

√
2 for general B [HKM01, AKM08].

Kobayashi, Miyazaki, and Okabe provide a refined upper bound of 2 − o(1) where the
o(1) term depends depends on B but tends to zero for large B [KMO07]. What is the
true competitiveness for LQD?

– What happens in the shared-memory, multiple output queue model with general-valued
packets? Is constant competitiveness achievable?

– In Section 4.5, we describe a model for a multi-output switch with a single active output
port and a reconfiguration penalty for changing that port. Azar et al. consider the case
of maximizing throughput for unit-valued packets [AFG+09]. What can be said about
the weighted case?

• Additional Models

– The paper of Bienkowski et al. [BCD+09], described in Section 6.1, brings up many
interesting questions about the new model and its implications on the bounded-delay
model. The most general version of their model has an upper bound of 1.89 and a lower
bound of 1.633, and their FIFO queue variant has an upper bound of 1.737 versus the
same lower bound of 1.633.

– In Section 6.2, we discuss a latency-sensitive model introduced by Fiat, Mansour, and
Nadav [FMN08]. For the nonpreemptive case with general values, they provide a mem-
oryless upper bound of 5.25 against a general lower bound of 3 (and a memoryless lower
bound of 4.1). They also conjecture that their incremental threshold framework can be
better tuned to a φ3 ≈ 4.23-competitive algorithm.

– What can be said about the preemptive version of the latency-sensitive model of Fiat,
Mansour, and Nadav [FMN08]?

• General Networks

– All of the research discussed in this survey focuses on the throughput of a single switch.
A general open problem is to extend these analyses to a network of switches; for example,
see [AOKR03, GR05, RS07, KR08, RR09].
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Babai, editor, Proc. 36th ACM Symp. on Theory of Computing (STOC), pages 64–71,
Chicago, Illinois, June 2004.

[AR05] Yossi Azar and Yossi Richter. Management of multi-queue switches in QoS networks.
Algorithmica, 43(1–2):81–96, 2005.

[AR06] Yossi Azar and Yossi Richter. An improved algorithm for CIOQ switches. ACM Trans.
on Algorithms, 2(4):640–660, 2006.

[AS04] Susanne Albers and Markus Schmidt. On the performance of greedy algorithms in
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gorithms for buffer management in QoS switches. In Susanne Albers and Tomasz
Radzik, editors, Proc. 12th European Symp. on Algorithms (ESA), volume 3221 of
Lecture Notes in Computer Science, pages 204–215, Bergen, Norway, September 2004.
Springer-Verlag.

ACM SIGACT News 25 March 2010 Vol. 41, No. 1



[CJST07] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Improved online al-
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[Jeż09c] Jan Jeżabek. Resource augmentation for QoS buffer management with agreeable dead-
lines. (unpublished), 2009.
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