
Objects in Client-Server
applications

CSCI 2300

Client-Server applications

• Server accepts connections from
client (socket)

• Client creates a connection to
server (socket)

• Client sends data to the server
via the socket

• Server receives data from client
via the socket

• Can send “objects” as data

Sockets in Java

• java.net.Socket – socket class in Java

• Create a socket connection to server:
• Socket socket = new Socket(HostIP, HostPort);

• Server must be running on the “HostIP”

• Server must be listening for connections on HostPort

• Write to a socket:
• Use OutputStream object of the socket
socket.getOutputStream()

So what do we “write” to the socket

• Custom message format

• Serializable object

• Object stored in commonly accepted format:
• XML

• JSON

Example: Pass a “TextMessage” object from
Client to Server: client_server/proprietary/

• Client and Server have an identical serializable
“TextMessage” class

• Client
• instantiates a TextMessage object and fills it with details

• Client connects to the server via a Socket
• Socket socketToServer = new Socket(hostIP,

hostPort);

• Client sends the TextMessage object to the server
• ObjectOutputStream streamToServer;

// initialize streamToServer

streamToServer.writeObject(textMessage);

What allows us to pass textMessage to the
writeObject() method:
streamToServer.writeObject(textMessage);

A. toString() method of TextMessage

B. Serializable interface that TextMessage implements

C. The constructor of TextMessage

D. The getMessage() method of TextMessage

E. textMessage cannot be passed to writeObject()

Server can be running on the same machine
as Client
• If Server is on the same machine as client, connect to ‘localhost’

network interface: 127.0.0.1

• Useful for testing

• Create a server socket:
• ServerSocket serverSocket = new ServerSocket(port);

• Creates a server socket that can listen on all network interfaces of the server,
using the given port number

• Server has to listen on a given interface and port
• Socket incoming = serverSocket.accept();

• Waits for client connections on serverSocket

Example: client_server/proprietary

• TextMessage implements Serializable

• Client
• instantiates a TextMessage object

• Sets the message

• Sends the message to the server

• Server
• Creates a server socket

• Listens for client connections on the server socket

• Reads the TextMessage object from the client

What if Client and Server ran on different
machines. What would happen if the
TextMessage class changed on the client
machine and not on the server machine?

A. This example would continue to work fine

B. Client would not be able to send TextMessage

C. Server would not be able to interpret received TextMessage

D. Code on the client machine would not compile

Let’s try it

• Added ‘String timeStamp‘ to client

• Kept old version of TextMessage on server

Run the example

• But what if we have to make a change and we have several servers
and clients?

• In practice, you can’t upgrade all clients and servers simultaneously

• We don’t want to break compatibility

• Proprietary format is not the best option in this case

JSON – Commonly used format

• JavaScript Object Notation

• Used to format data

• Commonly used in Web as a vehicle to describe data being sent
between systems

JSON example

• “JSON” stands for “JavaScript Object Notation”
• Despite the name, JSON is a (mostly) language-independent way of specifying objects as

name-value pairs

• Example

• {“TextMessage”: {
“name”: “Kate”,

“message”: “Hello”

}}

JSON syntax

• An object is an unordered set of name/value pairs
• The pairs are enclosed within braces, { }

• There is a colon between the name and the value

• Pairs are separated by commas

• Example: { "name": “Kate", “message": “Hello” }

• An array is an ordered collection of values
• The values are enclosed within brackets, []

• Values are separated by commas

• Example: ["html", ”xml", "css"]

JSON syntax

• A value can be: A string, a number, true, false, null, an object, or an
array
• Values can be nested

• Strings are enclosed in double quotes, and can contain the usual
assortment of escaped characters

• Numbers have the usual C/C++/Java syntax, including exponential (E)
notation
• All numbers are decimal--no octal or hexadecimal

• Whitespace can be used between any pair of tokens

Mapping between JSON and Java entities

JSON Java

string java.lang.String

number java.lang.Number

true|false java.lang.Boolean

null null

array java.util.List

object java.util.Map

JSON reading in Java example

• http://www.tutorialspoint.com/json/json_java_example.htm

Client Server example using JSON format:
client_server/json/
• Additional classes from javax.json package

• JsonObject
• JsonObjectBuilder
• JsonWriter
• JsonReader

• Convert TextMessage to JsonObject:
• TextMessage: toJson()

• Send JsonObject from client to server:
• Client: sendTextMessage()

• Re-build TextMessage from JsonObject:
• Server: readTextMessage()
• TextMessage: constructor with JsonObject parameter

Uses javax.json-1.1.4.jar

• Modify CLASSPATH from client_server directoryy
source configure.sh

• cd json

• javac –cp $CLASSPATH *.java

• java –cp $CLASSPATH Server

• java –cp $CLASSPATH Client

Image Client and Server ran on different
machines. What would happen if we added a
class variable to the TextMessage class on the
client machine and not on the server
machine?

A. This example would still work, the Server would read TextMessage
in the old format.

B. Client would not be able to send TextMessage

C. Server would not be able to interpret received TextMessage

D. Code on the client machine would not compile

Let’s try it

• Added ‘String timeStamp‘ to client

• Kept old version of TextMessage on server

Run the example

• As long as we didn’t remove any fields from TextMessage, we can
upgrade all client machines and then upgrade the server

•Can we upgrade the server first?

A. Yes B. No

