
9/30/2018

1

Java Swing and 
Interfaces
Practical example
CSCI 2300

Icon Interface

x and y are coordinates of the top left corner of the area to paint

Example 1: Snowman.java, SnowmanDisplay.java



9/30/2018

2

Moving Shape
We want to add some “animation” to our application

Let’s melt that snowman

Design changes: 
◦ Introduce MovableShape interface
◦ Introduce “generic” ShapeIcon class that “has-a” MovableShape

UML Diagram



9/30/2018

3

Creating an Animation
Application sketch:

◦ MeltingSnowman snowman = new MeltingSnowman…
◦ ShapeIcon icon = newShapeIcon(snowman,…)
◦ Jlabel label = new Jlabel(icon)
◦ Add the label to the frame
◦ Create a “timer” with ActionListener
◦ actionPerformed calls snowman.move() and label.repaint() 

◦ label.repaint() will call icon.paintIcon()
◦ icon.paintIcon() will call MovableShape’s draw() method

Example 2: ShapeIcon.java, MovableShape.java, MeltingSnowman.java, 
SnowmanAnimation.java

Car Animation
Same design as SnowmanAnimation

Use Car.java class instead of MeltingSnowman.java

public class Car implements MovableShape

{…}



9/30/2018

4

Exercises
1. The snowman in Example 1 does not stand up straight. Fix this problem.

2. Refactor Example 2 as follows:
◦ Create a superclass FixedSnowman() that has a draw() method
◦ Create two subclasses of FixedSnowman: MeltingSnowman and WalkingSnowman(). 

◦ Both subclasses should implement MovableShape interface. 
◦ MeltingSnowman should implement ‘move()’ method that will make the snowman disappear (as in the original 

example 2)
◦ WalkingSnowman should implement ‘move()’ method that will make the snowman take small steps along the x-

coordinates of the window. You may need to add some instance variables to make this happen.
◦ Do NOT implement draw() method in MeltingSnowman and WalkingSnowman, as they will inherit the draw() 

method from FixedSnowman()
◦ Create a test application for WalkingSnowman
◦ Create a test application for MeltingSnowman


