
9/28/2018

1

Inheritance and
Polymorphism
CSCI 2300

Polymorphism and Substitutability
A subclass has all attributes and behaviors of
its parent class/superclass

We can substitute a subclass instance when a
superclass instance is expected

Example: Cylinder is-a Circle (really, it’s “more-
than-a Circle”)

9/28/2018

2

Substitutability in practice
Can create an instance of Cylinder and assign it to a Circle reference

Circle c1 = new Cylinder(1, 2);

Can invoke all methods defined in the Circle class on c1

c1.getRadius();

Cannot invoke methods defined in the Cylinder class

c1.getHeight(); //COMPILER ERROR

C1.getVolume(); //COMPILER ERROR

c1 is a reference to the Circle class but holds an object of subclass Cylinder

c1 retains its internal identity:
◦ c1.getArea(); c1.toString() invoke the overridden versions defined in Cylinder

Polymorphism Example
Powerful tool

Separates interface from implementation

Programmer works at the interface level to design complex systems

9/28/2018

3

Upcasting and Downcasting
Downcasting - revert a substituted instance back to a subclass reference

Circle c1 = new Cylinder(1, 2); //auto downcast

Cylinder cy1 = (Cylinder) c1; //upcast needs the casting operator

Downcasting uses type-casting operator: (new-type)

Downcasting is not always safe: ClassCastException if the instance of to be
downcasted does not belong to the correct subclass

A subclass object can be substituted for a superclass object, but not vice versa

Example
public class CastingExample{

public static void main(String []args){

A a1 = new C(); //upcast

System.out.println(a1);

B b1 = (B)a1; //downcast ok

C c1 = (C)b1; //downcast ok

A a2 = new B(); //upcast

System.out.println(a2);

B b2 = (B)a2; //downcast ok

C c2 = (C)a2; // ClassCastException

}

}

9/28/2018

4

The ‘instanceof’ operator
Java binary operator that returns a boolean

◦ True if a given object is an instance of a particular class
◦ False otherwise

Syntax:

anObject instanceof aClass

Example

Circle c1 = Cylinder(1, 2);

System.out.println(c1 instanceof Cylinder); // true

if (c1 instanceof Circle){…}

Abstract class and abstract method
refreshes
A method can be declared abstract if is left unimplemented

◦ The class needs to be declared abstract as well
public abstract Board(){

public abstract boolean hasWinner();
}

Abstract classes cannot be instantiated

References of abstract type can be used to store objects of subclasses

9/28/2018

5

Exercise 1 - polymorphism
Implement Shape, Rectangle, and Triangle classes, as on the UML diagram

Implement a Test class that does the following in the main method:

Shape s = new Shape();

Shape r = new Rectangle();

Shape t = new Triangle();

System.out.println(s);

System.out.println(r);

System.out.println(t)

Exercise 2 – abstract classes
Change your Shape class to be ‘abstract’ by turning getArea() into an abstract method

Compile your test code
◦ What happens when you do that?
◦ Why does that happen?
◦ Modify your test code to make it work

9/28/2018

6

Exercise 3 – downcasting
Implement classes in the UML diagram

Write a test program that has:

A a1 = new C();

B b1 = new B();

C c1 = (C)b1;

C c2 = (C)a1;

Run the program and observe the ClassCastException exception

Fix the issue by using ‘instanceof’ operator

