Asymptotic Complexity Examples

September 7, 2018

1 Example 1: Prove that $f(n) = 3n^3 + 2n$ is $O(n^3)$.

To prove that $f(n) = 3n^3 + 2n$ is $O(n^3)$, we need to show that $\exists c > 0$ and $n_0 > 0$, such that $0 < f(n) = 3n^3 + 2n \le cn^3, \forall n \ge n_0$. (By the definition of O).

We know that $0 < 3n^3 + 2n \le 3n^3 + 2n^3 = 5n^3$, $\forall n \ge 1$. Therefore, if c = 5 and $n_0 = 1$, it is true that $f(n) = 3n^3 + 2n \le cn^3$, which completes the proof.

2 Example 2: Prove that f(n) = n + lg(n) is $\Theta(n)$.

To prove that f(n) = n + lg(n) is $\Theta(n)$, we need to show that:

- 1. f(n) = n + lg(n) is O(n) and
- 2. f(n) = n + lg(n) is $\Omega(n)$

Let's first show that f(n) = n + lg(n) is O(n), using the definition of O. We know that $0 < n + lg(n) \le n + n = 2n, \forall n > 2$. So if c = 2, and $n_0 = 2$, $0 < f(n) = n + lg(n) \le cn, \forall n \ge n_0$, which shows that f(n) = O(n).

Now let's show that f(n) = n + lg(n) is $\Omega(n)$, using the definition of Ω . We know that $0 < n \le n + lg(n), \forall n > 2$. So if c = 1 and $n_0 = 2, 0 < cf(n) = c(n + lg(n)) \le n, \forall n \ge n_0$, which shows that f(n) = O(n).

3 Example 3: Prove that the running time of the following algorithm is O(n)

Algorithm 1: For-loop with 3 iterations	
for $i = 1; i \leq 3; i = i + 1$ do Some operations with total run time $f(n) = O(n)$ end	

Let p(n) be the function defining the total number of operations inside the for-loop. To prove that the running time of this algorithm is O(n), we need to show that $\exists c > 0$ and $n_0 > 0$, such that $0 < p(n) \leq cn, \forall n \geq n_0$. Since one iteration of the loop takes f(n) operations and the loop iterates 3 times, we know that 0 < p(n) = 3f(n). The algorithm states, that f(n) = O(n), which means $\exists c_1 > 0$ and $n_0 > 0$, such that $0 < f(n) \leq c_1 n, \forall n \geq n_0$. Let $c = 3c_1$. Then $p(n) = 3f(n) \leq 3c_1 n = cn, \forall n \geq n_0$, which shows that p(n) is O(n), by definition.