
9/27/2018

1

Weighted Activity 
Selection
Activity Partitioning
CSCI 3100

Review & Overview
Last time

◦ Introduced activity selection problem
◦ Formulated solution in terms of sub-problems
◦ Solved using greedy approach
◦ Greedy strategy: pick activity with earliest finish time

Today
◦ Weighted version of activity selection problem
◦ Why ‘earliest finish time’ greedy strategy does not work
◦ Solution
◦ Activity partitioning problem



9/27/2018

2

Weighted activity selection
Given a set of activities S = {a1, a2, …, an}, where each activity is a 3-tuple with (start, finish, 
value), select a subset of non-overlapping activities such that the total value of this subset is 
maximized.

◦ Activities are sorted in ascending order by finish time
◦ finish1 ≤ finish2 ≤ … ≤ finishn

Non-weighted version of activity selection can be turned into weighted, by assigning each 
activity a weight of 1.

Earliest Finish Time greedy approach 
does not work
Come up with an example where the greedy approach of scheduling the activity with the earliest 
finish time will not produce an optimal solution



9/27/2018

3

Optimal substructure
Let Sj be a subset of S with the first j activities

Let opt[Sj] be the maximum value that can be obtained from scheduling activities in Sj

opt[Sj] is the larger of the two values:
◦ Profit obtained by excluding job j in the solution (opt[Sj-1])
◦ Profit obtained by including job j in the solution (value[j] + opt[Aj])

◦ where Aj ⊂ Sj, contains activities that do not overlap with aj

opt[Sj] = max{ opt[Sj-1], value[j] + opt[Aj])

Divide & Conquer – Recursive solution



9/27/2018

4

Overlapping sub-problems



9/27/2018

5

Divide & Conquer – Dynamic 
Programming Solution



9/27/2018

6

Interval Partitioning Problem
Given: set of n lectures with start and finish times

Goal: schedule the lectures using minimum number of classrooms, so that no two lectures are 
scheduled in the same classroom at the same time

Example
• Figure (a) and Figure (b) shows two 

solutions to the same problem

• Solution in Figure (a) uses 4 classrooms

• Solution in Figure (b) uses 3 classrooms

• Can we do better than 3 classrooms?

• Depth of the set of intervals – max number 
that pass over any single point at the same 
time

• In the example, depth = 3

• If we use # of classrooms equal to the 
depth, this solution is optimal



9/27/2018

7

Algorithm sketch
Sort lectures in increasing order by start time

Assign next lecture to some classroom k, if it is compatible with k

If lecture is not compatible with any classrooms c1, …, ck, open a new classroom k+1

Proof of optimality:

Algorithm

Time complexity:


