
10/25/2018

1

Minimum Spanning Trees
Prim’s Algorithm
Priority Queues
CSCI 3100

Review & Overview
Last time

◦ Spanning trees and spanning tree properties
◦ Minimum spanning tree of a Graph
◦ Kruskal’s algorithm for MST uses greedy approach: select next smallest edge, if one of the end-points of

that edge is not yet in the tree, add the edge and both end-points to the tree.

This time
◦ Prim’s algorithm for MST
◦ Priority Queues
◦ Proof of Fluff

10/25/2018

2

Prim’s Algorithm
In Kruskal’s algorithm we grow a spanning forest rather than a spanning tree

◦ Only at the end is it guaranteed to be connected, hence a spanning tree

In Prim’s algorithm we grow a spanning tree

T = the set of nodes currently forming the tree

Prim’s algorithm: always add the cheapest edge crossing the cut

3

Vertices in the
growing tree

Vertices not
yet in the tree

Edges crossing
the cut

T

V-T

10/25/2018

3

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select any vertex

A

Select the shortest
edge connected to
that vertex

AB 3

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge connected to
any vertex already
connected.

AE 4

Prim’s Algorithm

10/25/2018

4

Select the shortest
edge connected to
any vertex already
connected.

ED 2

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge connected to
any vertex already
connected.

DC 4

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

10/25/2018

5

Select the shortest
edge connected to
any vertex already
connected.

EF 5

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18

10/25/2018

6

Prim’s algorithm
MST_PRIM(V, E)

V’ = empty, E’ = E

Select u from V, add u to V’

While |V’| < |V|

select smallest edge (x,y) crossing the cut between
|V’| and |V-V’| (x is in V’)

add y to V’

add (x, y) to E’

return E’

11

How will we
do this?

We will use a “Priority queue”
A stack is first in, last out

A queue is first in, first out

A priority queue is least-first-out
◦ The “smallest” element is the first one removed

◦ (You could also define a largest-first-out priority queue)

◦ The definition of “smallest” is up to the programmer
◦ If there are several “smallest” elements, the implementer must decide which to remove first

◦ Remove any “smallest” element (don’t care which)
◦ Remove the first one added

12

10/25/2018

7

Operations of a priority queue
Possible operations of a priority queue
◦ Build a priority queue
◦ Add an element to the priority queue
◦ Remove smallest element from the priority queue
◦ Get smallest element (without removing)
◦ Check if priority queue is empty
◦ Get the size of the priority queue

Java has a PriorityQueue class

13

Evaluating implementations
When we choose a data structure, it is important to look at usage patterns

◦ If we load an array once and do thousands of searches on it, we want to make searching fast—so we
would probably sort the array

◦ If we load a huge array and expect to do only a few searches, we probably don’t want to spend time
sorting the array

For almost all uses of a queue (including a priority queue), we eventually remove everything that
we add

Hence, when we analyze a priority queue, neither “add” nor “remove” is more important—we
need to look at the timing for “add + remove”

14

10/25/2018

8

Unsorted array implementation
A priority queue could be implemented as an unsorted array. If n is the number of
elements in the queue, what is the complexity of adding and removing an element

◦ A. Adding an element - O(1), removing an element - O(n) time
◦ B. Adding an element - O(n), removing an element O(1)
◦ C. Adding an element - O(1), removing an element O(1)
◦ D. Adding an element - O(n), removing an element - O(n lg(n))
◦ E. None of the above

15

Sorted array implementations
A priority queue could be implemented as a sorted array. If n is the number of
elements in the queue, what is the complexity of adding and removing an element?

◦ A. Adding an element - O(1), removing an element - O(n) time
◦ B. Adding an element - O(n), removing an element O(1)
◦ C. Adding an element - O(1), removing an element O(1)
◦ D. Adding an element - O(n lg(n)), removing an element - O(1)
◦ E. None of the above

16

10/25/2018

9

Unsorted linked list implementation
A priority queue could be implemented as an unsorted linked list. If n is the number of
elements in the queue, what is the complexity of adding and removing an element?

◦ A. Adding an element - O(1), removing an element - O(n) time
◦ B. Adding an element - O(n), removing an element O(1)
◦ C. Adding an element - O(1), removing an element O(1)
◦ D. Adding an element - O(n), removing an element - O(n lg(n))
◦ E. None of the above

17

Unsorted linked list implementation
A priority queue could be implemented as an sorted linked list. If n is the number of elements in
the queue, what is the complexity of adding and removing an element?

A priority queue could be implemented as a sorted linked list
◦ A. Adding an element - O(1), removing an element - O(n) time
◦ B. Adding an element - O(n), removing an element O(1)
◦ C. Adding an element - O(1), removing an element O(1)
◦ D. Adding an element - O(n), removing an element - O(n lg(n))
◦ E. None of the above

18

10/25/2018

10

Unbalanced binary tree implementation
A priority queue could be represented as a (not necessarily balanced) binary search
tree

◦ A. Adding an element - O(log n) removing an element - O(n)
◦ B. Adding an element ranges from O(log n) to O(n), removing an element ranges O(log

n) to O(n)
◦ C. Adding an element - O(log n), removing an element - O(log n)
◦ D. Adding an element - O(n log n), removing an element – O (1)
◦ E. Adding an element - O (1), removing an element - O(log n)

19

Binary tree implementations
A priority queue could be represented as a balanced binary search tree

◦ Insertion and removal could destroy the balance
◦ We need an algorithm to rebalance the binary tree

◦ Good rebalancing algorithms require only O(log n) time, and are complicated

20

10/25/2018

11

Heap implementation
A priority queue can be implemented as a heap

In order to do this, we have to define the heap property

For a priority queue, we will define a node to have the heap property if it
is as least as small as its children (since we are using smaller numbers to
represent higher priorities)

21

3

8 12

Priority queue: Orange node
has the heap property

Array representation of a heap

Left child of node i is 2*i + 1, right child is 2*i + 2
◦ Unless the computation yields a value larger than lastIndex, in which

case there is no such child

Parent of node i is (i – 1)/2
◦ Unless i == 0

22

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

10/25/2018

12

Using the heap
To add an element:

◦ Increase lastIndex and put the new value there
◦ Reheap the newly added node by swapping with parent node, until heap property is

restored
◦ This is called up-heap bubbling or percolating up
◦ Up-heap bubbling requires O(log n) time

To remove an element:
◦ Remove the element at location 0
◦ Move the element at location lastIndex to location 0, and decrement lastIndex
◦ Reheap the new root node (the one now at location 0) by swapping with smallest child

element until heap property is restored
◦ This is called down-heap bubbling or percolating down
◦ Down-heap bubbling requires O(log n) time

Thus, it requires O(log n) time to add and remove an element

23

Example: up-heap (percolate up)

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

10/25/2018

13

Example: down-heap (percolate down)

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

Comments
A priority queue is a data structure that is designed to return elements
in order of priority

Efficiency is usually measured as the sum of the time it takes to add and
to remove an element

Simple implementations take O(n) time

A heap implementation takes O(log n) time

Thus, for any sort of heavy-duty use, a heap implementation is better

26

10/25/2018

14

Prim’s algorithm with priority queue

Proof or Fluff

10/25/2018

15

Let T=(V, E) be a tree. Prove that
|E|=|V|-1
Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with |V|-1 vertices. Then this tree has |V|-1-1 edges.
We can construct another tree by adding one new vertex and connecting it to one of vertices in the
tree with one edge. Thus, we have a tree with |V| vertices and |V|-1-1+1= |V|-1 edges. This proves
that |E|=|V|-1.

A. This proof is valid

B. This proof is flawed because it proves that there exists a tree with |E|=|V|-1 and not the general
case

C. This proof is flawed because it doesn’t prove that the newly constructed tree is in fact a tree.

D. This proof is flawed for some other reason

Let T=(V, E) be a tree. Prove that |E|=|V|-1
Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with n<|V| vertices.

Let T be a tree with |V| vertices. Let e be an edge connecting vertices u and v in T. Since T is a tree,
there is a unique path from u to v and it has to be via edge e. If we remove e, T will become
disconnected. Now T-{e} consists of two components T1 and T2 and those components are trees (since
there were no cycles in T to begin with).

Let n1 be the number of vertices in T1 and n2 be the number of vertices in T2, so n1+n2=|V|.

Also 0 < n1 < |V| and 0 < n2 < |V|. By inductive hypothesis the number of edges in T1 is n1-1 and the
number of edges in T2 is n2-1. Thus, the number of edges in T is n1-1+n2-1+1=n1+n2-1=|V|-1.

A. This proof is valid

B. This proof is flawed because n1+n2=|V| is false

C. This proof is flawed because T1 and T2 are not guaranteed to be trees.

D. This proof is flawed for some other reason

