Approximation Algorithms

CSCI 3100

2

Approximation Algorithms

Let's consider optimization problems only.

An algorithm A is an approximation for a problem L: if given any valid instance I, it finds a solution A(I) for L and A(I) is "close" to optimal solution OPT(I).

3

4

Approximation Ratio

Approximation ration (or bound) $\boldsymbol{\beta}$ of approximation algorithm A for problem L.

A(I)/OPT(I) $\leq \beta$; if L is a minimization problem and A(I) \geq OPT(I) > 0

 $OPT(I)/A(I) \le \beta$; if L is a maximization problem and $OPT(I) \ge A(I) > 0$ Example:

• Suppose we have an "approximation algorithm for the max-clique" problem.

• Given a graph G, the algorithm finds a clique of size M.

- $\circ\,$ If our approximation algorithm has approximation ratio $\beta,$ we know that the optimal solution is no bigger than β *M
- $\circ~$ Suppose β is 2 and M is 10.
- Then we know that the optimal solution is no bigger than 20.

Maximum Programs Stored (PS) Problem

<u>Optimization PS Problem</u>: Given a set of n program and two storage devices. Let s_i be the amount of storage needed to store the ith program. Let L be the storage capacity of each disk. Determine the maximum number of these n programs that can be stores on the two disks (without splitting a program over the disks).

5

Approximation Ratio

Let C^* be the optimal (maximum) number of programs that can be stores on the two disks.

The above approximation PS algorithm gives very good approximation ratio.

 $C^* \le (C + 1)$ OR $C^* / C \le 1 + 1/C$

i.e. the given program stores

at most 1 program less than

the optimal solution

The above approximation algorithm returns value C such that $C^* \leq C+1$, where C* is the optimal solution.

Our example showed that there exists a set S and value L such that $C^* = C+1$.

Need to show that $\forall \{s_1, s_2, ..., s_n\}$ and L, $C^* \leq (C + 1)$

Let's consider only one disk with capacity 2L.

Greedy proof: We can store maximum number of programs into the disk by considering programs in the order of

 $s_1 \leq s_2 \leq ... \leq s_n$

Let $\boldsymbol{\alpha}$ be the maximum number of programs that are stored in the disk

The above approximation algorithm for TSP has an approximation factor 2

Let O be the cost of the optimal solution

We know that O \geq weight (MST). Which of the following statements is true?

- A. weight (path produced by algorithm) \leq 2 * weight (MST) \leq 2 * O
- B. O < 2 * weight(MST)
- C. weight(path produced by algorithm) < O
- D. 2*O < weight(path produced by algorithm)
- E. None of the above

Example: starting at vertex 1, what is the weight of the solution produced by our TSP approximation algorithm.

