
1

Approximation
Algorithms
CSCI 3100

1

Introduction
In general, computer cannot solve NPC problem efficiently

But, many NPC problems are too important to abandon

If a problem is an NPC problem, you may try to
◦ find a pseudo polynomial time algorithm if it is not NPC in the strong sense

◦ Pseudo-polynomial: polynomial in the numeric value of the input
◦ Subset sum problem: O(N*K)

◦ solve restricted problems
◦ find approximation algorithms
◦ Use heuristic based methods

2

2

Approximation Algorithms
Let’s consider optimization problems only.

An algorithm A is an approximation for a problem L : if given any valid
instance I, it finds a solution A(I) for L and A(I) is “close” to optimal
solution OPT(I).

3

Approximation Ratio
Approximation ration (or bound)  of approximation algorithm A for
problem L.

A(I)/OPT(I)  ; if L is a minimization problem and A(I)  OPT(I) > 0

OPT(I)/A(I)  ; if L is a maximization problem and OPT(I)  A(I) > 0

Example:
◦ Suppose we have an “approximation algorithm for the max-clique” problem.
◦ Given a graph G, the algorithm finds a clique of size M.
◦ If our approximation algorithm has approximation ratio , we know that the

optimal solution is no bigger than  *M
◦ Suppose  is 2 and M is 10.
◦ Then we know that the optimal solution is no bigger than 20.

4

3

Maximum Programs Stored
(PS) Problem
Optimization PS Problem: Given a set of n program and two storage
devices. Let si be the amount of storage needed to store the ith program.
Let L be the storage capacity of each disk. Determine the maximum
number of these n programs that can be stores on the two disks
(without splitting a program over the disks).

5

Example : L = 10 S =(2, 4, 5, 6)
How many programs (from the set S)
can we store on two disks of size 10?
A. 1
B. 2
C. 3
D. 4

6

4

The decision PS problem is NPC

Approximation PS Algorithm
// assume programs are sorted in nondecreasing order of program size,

// i.e. s1  s2  …  sn.

// Put as many programs as you can in the 1st disk, then go to the 2nd disk.

i = 0; c=0; // c count the number of stored program

for j = 1 to 2 {

sum = 0

while (sum + si  L) {

store ith program into jth device

sum += si
i++; c++

if i > n return

}

}

7
Run time:

Example : L = 10 Si =(2, 4, 5, 6)

8

Disk 1

Disk 2

S1 S2

S3

0 2 6 10

0 5 10

5

Approximation Ratio
Let C* be the optimal (maximum) number of programs that can be
stores on the two disks.

The above approximation PS algorithm gives very good approximation
ratio.

C* <= (C + 1) OR C*  C <= 1 + 1/C

i.e. the given program stores

at most 1 program less than

the optimal solution

The above approximation algorithm
returns value C such that C* ≤ C+1,
where C* is the optimal solution.
Our example showed that there exists a set S and value L such that
C* = C+1.

Need to show that {s1, s2, …, sn} and L, C*  (C + 1)

Let’s consider only one disk with capacity 2L.

Greedy proof: We can store maximum number of programs into the disk
by considering programs in the order of

s1  s2  …  sn

Let  be the maximum number of programs that are stored in the disk

10

6

Clearly   C* and s1 + s2 + … + s  2L (i)

Let j be an index such that
(s1 + s2 + … + sj)  L and
(s1 + s2 + … + sj+1) > L (ii)

j   and j programs are stored in the 1st disk by the above
approximation algorithm
By (i) & (ii), (sj+2 + sj+3 + … + s)  L
  (sj+1 + sj+2 + … + s-1)  L

 at least (j+1)th program, (j+2)th

program, …, (-1)th program are
stored in 2nd disk by the above
approximation alg. Done!

11

Travelling Salesman Problem
Given

◦ a set of cities/clients and travel duration between cities/clients

Find
◦ A route that visits all cities/clients as quickly as possible, returning to the

starting point

Translate this to a graph problem:
◦ Given a graph G = (V, E), where V is a set of cities/clients and E is a weighted

set of edges/roads connecting cities/clients and a vertex s in V,
◦ Find a cycle that starts at s and visits each vertex such that the edge weights

of this cycle are minimized
◦ Edges can be repeated

12

7

Example: start at vertex a

13

Approximation Algorithm
Let s be the starting point

Construct MST starting at s

List vertices of the MST in the order visited by “pre-order” walk:
◦ pre-order-walk(T, root)
visit root
for (each vertex v adjacent to root)

pre-order-walk(Subtree of T starting at v, v)
visit v

14

8

Pre-order walk starting at 1

15

1

2 3 4

5 6

The above approximation
algorithm for TSP has an
approximation factor 2
Let O be the cost of the optimal solution

We know that O ≥ weight (MST). Which of the following statements is
true?

A. weight (path produced by algorithm) ≤ 2 * weight (MST) ≤ 2 * O

B. O < 2 * weight(MST)

C. weight(path produced by algorithm) < O

D. 2*O < weight(path produced by algorithm)

E. None of the above

16

9

Example: starting at vertex 1,
what is the weight of the
solution produced by our TSP
approximation algorithm.

17

A. 26
B. 13
C. 5

D. 20

1

2 3 4

5 6

2 3

5

4

61 3

4
5

