9/5/2018

CSClI 3100

Comparison Sorts

Review & Overview

S Last time on Algorithms:

¢ Counted all operations of insertion sort

¢ Introduced “asymptotic analysis”:
¢ g(n) = O(f(n)) => f(n) is an asymptotic upper bound of g(n)
¢ g(n) = Q(f(n)) => f(n) is an asymptotic lower bound of g(n)
¢ g(n) = O(f(n)) => f(n) is asymptotically equivalent to g(n)

|

¢ Lower bound on comparison sorts
¢ Formal proof
e First homework

How Fast Can We Sort?

Insertion sort: 0(n?)

Bubble Sort, Selection Sort: ®(n?)

Merge sort: ®(nlgn)
Quicksort: ®(nlgn) - average

What is common to all these algorithms?

* They all sort by making comparisons between the input elements

Comparison Sorts

Compare elements to gain information about an
input sequence (a,, a,, ..., a,,)

Perform tests: a;, < a, a;< a, a,=a;, a2 a; or

a; > a, to determine the relative order of a; and 3,

For simplicity, assume that all the elements are
distinct

9/5/2018

Lower bound on comparison based sorting
algorithms

Theorem:
Any comparison sort algorithm requires Q(n Ig(n)) comparisons in the worst case

* True or False?
* Any comparison sort algorithm will take at least n /g (n) comparisons to

complete for ALL inputs.

* For any comparison sort algorithm, there exists an input that will take at least
n Ig(n) comparisons to complete.

* There is no comparison sort algorithm that will take less than n Ig(n)
comparisons for ALL inputs.

Decision Tree Model

* Represents the comparisons made by a sorting algorithm on an input of a given size.

* Models all possible execution traces

* Control, data movement, other operations are ignored

¢ Count only the comparisons

compare A[1]to A[2] | node

<> Al > A[2]
A< A[2] (13D Al A2

> A[2]>A[3]

All1<AL2] <

leaf: [A[IT<ARI<ADI |

((1:3.2) (3.1.2) [(2%])] (3.2.1)

9/5/2018

Worst-case number of comparisons?

* Worst-case number of comparisons depends on:
* the length of the longest path from the root to a leaf

(i.e., the height of the decision tree)

compare A[1] to A[2]

A[l] < A[2] < A[1] > A[2] (swap in array)

All] < A[2] SA[R]

(13.2)) (3.1.2)

Lemma ’

* Binary tree of height h has at most 2" leaves
* Proof by induction on h

Base Case ‘

* h=0 => tree has one node, which is a leaf
* # leaves = 1 < 29(TRUE)

Inductive Step

e Assume true for h-1 (# leaves < 21) o

¢ Extend the height of the tree to one more level

e Each leaf becomes a parent to two new leaves () (3)—h1

e # leaves at level h = 2*(#leaves at level h-1)< 2*2h1 = o ol0 () b

9/5/2018

What is the least number of leaves
in a Decision Tree Model?

* All permutations on n elements must appear as one of the leaves in the decision

tree: n! permutations

¢ At least n! leaves

compare A[1] to A[2]

All] £ A[2] < > A[1] > A[2] (swap in array)

Lower Bound for Comparison Sorts

Theorem:
Any comparison sort algorithm requires Q(n Ig(n)) comparisons in the worst case

Proof: How many leaves does the tree have? compare A[1] to A[2]

* At least n! (each of the n! permutations must
appear as a leaf)

A[1]1<A[2] < 5 A[1]> A[2] (swap in array)

* There are at most 2" leaves (by the previous
Lemma)

S nl<oh A[I]<A[2] <A[3]

> hxlig(n!)=0(?)

leaves

9/5/2018

lg(n!) = Q(?)

1.n!>2" = Ig(n!)=nlg2=n =>1Ig(n!)=Q(n) =>=>=>

n < lg(n!)

* We need a tighter lower bound!

* Use Stirling’s approximation (3.18):

nl=~2m (:)(1 + @(i))

lg(n!) = 1g2m + lg(ﬁjn + 1g(1 + @(l)j
e n

ang(EJZCnlgn forc=0.5 and n>n, =¢’
e

lg(n!) = Q(nlgn)

9/5/2018

