

How Fast Can W	Ve Sort?
Insertion sort:	O(n ²)
Bubble Sort, Selection	Sort: ⊖(n²)
Merge sort:	$\Theta(nlgn)$
Quicksort:	$\Theta(nlgn)$ - average
What is common to all	these algorithms?
• They all sort by making co	mparisons between the input elements

Lower bound on comparison based sorting algorithms

Theorem:

Any comparison sort algorithm requires $\Omega(n \log(n))$ comparisons in the worst case

- True or False?
 - Any comparison sort algorithm will take at least *n lg (n)* comparisons to complete for ALL inputs.
 - For any comparison sort algorithm, there exists an input that will take at least *n lg*(*n*) comparisons to complete.
 - There is no comparison sort algorithm that will take less than *n lg(n)* comparisons for ALL inputs.

$$lg(n!) = \Omega(?)$$
1. $n! \ge 2^n \Rightarrow |g(n!) \ge n |g^2 = n \Rightarrow |g(n!) = \Omega(n) \Rightarrow n \le |g(n!)$

• We need a tighter *lower* bound!

• Use Stirling's approximation (3.18):
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta(\frac{1}{n})\right)$$

$$lg(n!) = lg \sqrt{2\pi n} + lg\left(\frac{n}{e}\right)^n + lg\left(1 + \Theta(\frac{1}{n})\right)$$

$$\ge n lg\left(\frac{n}{e}\right) \ge cn lg n \quad \text{for } c = 0.5 \text{ and } n > n_0 = e^2$$

$$lg(n!) = \Omega(n lg n)$$