
2/6/2019

1

Inheritance and
Polymorphism

CSCI 2300

Polymorphism and Substitutability

• Polymorphism - the condition of occurring in several different forms
• A subclass has all attributes and behaviors of its parent

class/superclass
• We can substitute a subclass instance when a superclass instance is

expected (LSP)
• Overriding methods often breaks LSP

2/6/2019

2

Polymorphism Example

• Powerful tool
• Separates interface from implementation
• Programmer works at the interface level to design complex systems

Polymorphism via abstract classes

• Parent class can be 'abstract' – unimplemented
• Child classes implement the methods declared in the parent class

public abstract class Vehicle
{

public abstract void drive(int miles);
}

public class ToyCar extends Vehicle
{

public void drive(int miles)
{

//make noises, flash lights
}

}

public class Scooter extends Vehicle
{

public void drive(int miles)
{

if (miles > 0 && miles < 50)
…

}
}

Abstract classes
cannot be
instantiated

2/6/2019

3

Abstract class and abstract method overview

• A method can be declared abstract if is left unimplemented
• The class needs to be declared abstract as well

• Abstract classes cannot be instantiated
• References of abstract type can be used to store objects of subclasses
• A class can be declared abstract even if it has no abstract methods
• A class can have abstract and non-abstract methods

1. Shape s = new Shape();
2. Shape r = new Rectangle();
3. System.out.println(s);
4. System.out.println(r);

public abstract class Shape
{

public abstract double getArea();
String toString(){…}

}

public class Rectangle extends Shape
{

public double getArea()
{

//calculates and returns area
}
String toString()
{

//creates and returns a string
}

}

Will this code work?

A. Yes
B. No, because you cannot assign a

Rectangle object to a Shape
reference (line 2)

C. No, you cannot instantiate
Shape class on line 1, because
Shape is abstract

D. B and C

2/6/2019

4

1. void displayShape(Shape s)
2. {
3. System.out.println(s)
4. }
...

5. Rectangle r = new Rectangle()
6. displayShape(r);

public abstract class Shape
{

public abstract double getArea();
String toString(){…}

}

public class Rectangle extends Shape
{

public double getArea()
{

//calculates and returns area
}
String toString()
{

//creates and returns a string
}

}

Will this code work?

A. Yes
B. No, because you cannot pass a

Rectangle object to a Shape
argument (line 6)

C. No, you cannot use Shape as an
argument, because Shape is
abstract (line 1)

D. B and C

Lab 6 prep

• Review Cylinder example (on class web page) from Jan 30
• Identify problems in the design:

• Where does this design break LSP?

2/6/2019

5

Lab 6

• Fix the problems in the Cylinder example using abstract class.

