
2/20/2019

1

Building Tic Tac Toe with
SWING API

CSCI 2300

Simple game of tic tac toe

• GUI front-end
• Object-oriented
• Can play against another player

or against computer

2/20/2019

2

Where do we start?

Top down
• Develop a prototype
• Determine sequence of events
• Implement main sequence

• Break problem into classes

• Implement next sequence
• May need to restructure classes

• Continue until all requirements
are met

Bottom up
• Break the problem into classes
• Define class interfaces
• Integrate classes together: make

sure they work with each other
• Develop the GUI layer
• Connect your classes to the GUI

layer
• May need to restructure classes

Develop a prototype

• In your git repos you will find a tic_tac_toe directory with
GameGUI.java

• Non-functional prototype
• Presents the look
• Does not work

• What is GameGUI class responsible for?
• GameGUI has too many responsibilities

2/20/2019

3

Single Responsibility
Principle (SRP)
• Each class has one responsibility

(and one reason to change)

GameGUI has many responsibilities

• Arrange GUI components
• Implementation of "announcement panel"
• Implementation of "score board panel"
• Implementation of "board panel"

•Many reasons to change GameGUI class

2/20/2019

4

How can we fix it?

• Split each component into a separate class
• AnnouncementGUI
• ScoreBoardGUI
• BoardGUI

• Each class is responsible for implementing the behavior of the
component it represents

• GameGUI simply arranges GUI compoenents.
• Look in tic_tac_toe/v1 directory

class Person {
protected String firstName;
protected String lastName;
protected Gender gender;
protected DateTime dateOfBirth;
public string Format(string formatType)
{

switch(formatType)
{

case “XML":
return xmlFormattedString; break;

case "FirstAndLastName":
return firstAndLastNameString; break;

default:
// implementation of default formatting
return defaultFormattedString;

}
}

}

A. This class violates SRP
because it encapsulates
multiple attributes of a
person

B. This class violates SRP
because it does not have a
constructor

C. This class violates SRP
because it is responsible for
encapsulating “person”
attributes and formatting
them

D. This class does not violate
SRP

Does this code violate SRP?

2/20/2019

5

How can we fix it?

Person PersonFormatter

Encapsulates Person attributes Formats Person as String, based
on desired format

Back to Tic Tac Toe

• Making the prototype work
• Scenario 1: When board button is clicked, current player's game piece

gets placed on that button
• GamePiece
• BoardButton
• Player

• Which class should be responsible for Scenario 1?

A. GameGUI D. BoardButton
B. BoardGUI E. A new, not yet defined class
C. Player

2/20/2019

6

Design continued

• Scenario 2: When the board contains three identical game pieces in a
row, the game is over.

• Check if there are three identical pieces in a row
• If yes, disable all board buttons
• Update announcement
• Update score

• Which class should be responsible for implementing Scenario 2?

A. GameGUI D. BoardButton
B. BoardGUI E. A new, not yet defined class
C. ScoreBoardGUI

Need a new class to maintain game state

• GameControl
• Maintains and updates game state (implements scenarios 1 & 2)

• Who is the current player
• What moves have been made (state of the game board)

• Needs access to:
• ScoreBoardGUI
• AnnouncementGUI
• Both players
• Board buttons

2/20/2019

7

Tight coupling: classes have a high degree of
dependence of classes on each other. If one class
changes, the other may have to change too

GameControl

ScoreBoardGUI

AnnouncementGUI
BoardGUI

Player

How can we fix it?

• Use Interfaces
• IBoard, IScore, IAnnouncement, IPlayer
• Delegate responsibilities to classes that implement these interfaces
• Example:

• IBoard – implements methods for keeping the state of the board
• IScore – implements methods for keeping track of score
• etc

2/20/2019

8

Lab 11: tic_tac_toe/v2

• Added GameControl class
• Added several interfaces
• TODO: have existing GUI classes implement the new interfaces

• Update access modifier in interfaces to be public
• ScoreBoardGUI implements IBcore
• BoardGUI implements IBoard
• AnnouncementGUI implements IAnnouncement

