
3/4/2019

1

Java Generics Examples and 
Exercises

CSCI 2300

Review

• POGIL activity on Generics and Collections
• Key lessons from that activity

• ?



3/4/2019

2

Creating your own Generic types

• Only if it makes sense
• Repeated behaviors on different object types
• Data structures

• Linked list
• Binary tree
• Priority queue
• Etc

Example

• Consider a Matrix class

3 2 1
2 5 8
7 8 8

• Implementation options
• Use 2-dimentional array of double
• Use 2-dimentional array of Object
• Use generic type



3/4/2019

3

Implementing Matrix with 2-dimentional 
array of double
public class Matrix
{

private double [][]values;
private int rows;
private int cols;
public Matrix(int r, int c)
{

rows = r;
cols = c;
values = new double[rows][cols];

}
public void set(int r, int c, double v){values[r][c] = v;}
public double get(int r, int c){return values[r][c];}

}

Using Matrix class

Matrix m = new Matrix(3, 3);

m.set(0, 0, 1.0);

double v = m.get(0,0);



3/4/2019

4

Matrix m = new Matrix(3,3);

A. We can set a boolean value in Matrix m with m.set(0, 0, true), and 
true will get stored as double.

B. We can use double to represent booleans, where 0 is false and non-zero is 
true

C. We cannot use Matrix class to represent a matrix of booleans
D. A & B

Suppose we have the following Matrix object. 
Can we use it to store a matrix of boolean values?

What if we wanted a Matrix of non-numeric 
values?
public class Matrix
{

private Object [][]values;
private int rows;
private int cols;
public Matrix(int r, int c)
{

rows = r;
cols = c;
values = new Object[rows][cols];

}
public void set(int r, int c, Object v){values[r][c] = v;}
public Object get(int r, int c){return values[r][c];}

}



3/4/2019

5

Matrix m = new Matrix(3,3);

A. We can set a Card c object in Matrix m with m.set(0, 0, c) 
because Card extends Object

B. We can up-cast Card c to Object and store it in matrix with
m.set(0, 0, (Object)c)

C. We cannot use Matrix class to represent a matrix of Card objects
D. A & B

Suppose we have a class Card and the the following Matrix 
object. Can we use it to store a matrix of Card objects?

Suppose we added a 'get' method to Matrix

public Object get(row r, col c)
{

return values[r][c];

}

Can we use the get method to retrieve a card from a matrix?

A. Yes, but we need to down-cast it to Card type: Card c = (Card)m.get(0, 0)
B. Yes, you can simply call the get method: Card c = m.get(0,0);
C. No, you cannot assign Object reference returned from Matrix to a Card reference.
D. A & B



3/4/2019

6

Using Generics
public class Matrix<T>

{

private T [][]values;

private int rows;

private int cols;

public Matrix(int r, int c)

{

rows = r;

cols = c;

values = new T[rows][cols]; //  THIS WILL NOT COMPILE

}

public void set(int r, int c, T v){values[r][c] = v;}

public T get(int r, int c){return values[r][c];}

}

Java Type Erasure

• Types are checked at compile time
• Replaces all type parameters in generic types with Object (or type 

bounds)
• Produced byte code contains only ordinary classes, interfaces, methods

• Inserts type casts, when necessary
• Only one class is generated 

• Different from C++



3/4/2019

7

Generic type bounds
public class Matrix<T extends Object>

{

private Object [][]values;

private int rows;

private int cols;

public Matrix(int r, int c)

{

rows = r;

cols = c;

values = new Object[rows][cols]; //  COMPILER WARNING

}

public void set(int r, int c, T v){values[r][c] = v;}

public T get(int r, int c){return (T)values[r][c];}

}

Other Alternatives

• Use Java Collections
• List
• Array List



3/4/2019

8

Lab 12

• Create a generic type to represent a pair of objects. The two objects 
in the pair can be of different types

• Example usage: Pair<Integer, Card> p = new Pair<Integer, Card>(…);


