
3/20/2019

1

Observer Design Pattern
CSCI 2300

Announcements/Questions

• Questions about the homework?
• Submit labs 9 – 15 (this includes today's lab) by Friday, March 22.



3/20/2019

2

Recall…

• What design pattern did we learn last time?
• What are the responsibilities of:

• Model
• View
• Controller

Observer Design Pattern

Defines a one-to-many relationship between objects
One object changes state, others are notified of the change

• Model – the subject being observed (Observable)
• Model – notifies all Observer(s) if there is a change
• Observer – uses Model to update its information



3/20/2019

3

Observers

OBSERVABLE

Java Observable Class: 
https://docs.oracle.com/javase/7/docs/api/java/util/Observable.html

Model extends Observable class:
• addObserver(Observer o)

• deleteObserver(Observer o)

• setChanged()

• hasChanged()

• clearChanged()

• notifyObservers()

• notifyObservers(Object arg)

• countObservers()



3/20/2019

4

Java Observer Interface: 
https://docs.oracle.com/javase/7/docs/api/java/util/Observer.h
tml
public void update(Observable o, Object arg)

Classes that want notification of Model's state changes, implement 
Observer interface 

Observer

ObserverClass1

Observable

ObserverClass2

Call notifyObservers()
when change happens

notifyObservers() will 
call update() on each 
observer that has been added

Model



3/20/2019

5

Math Quiz
• QuizModel has three states, implemented as enumeration type

• NEW_QUESTION – when new question gets generated
• CORRECT – when correct answer is submitted
• WRONG – when wrong answer is submitted

• QuizModel extends Observable
• QuizModel has new method:
private void changeState(QuizState state)
{

this.state = state;
setChanged();
notifyObservers(); // all observers get notified

}
• QuizModel has getState() method – returns current state

MathQuiz

• QuizView implements Observer interface
public void update(Observable o, Object arg)
{

QuizState state = model.getState();
switch (state)
{

case NEW_QUESTION: …
case CORRECT: …
case WRONG: …

}
}



3/20/2019

6

How is this different from 
our previous 
implementation of 
Submit Answer?

How is this different from our 
previous implementation of 
TryAgain?



3/20/2019

7



3/20/2019

8

QuizView

Observer

QuizModel

Observable

QuizController

Problem

Multiple Observers of the same Model

• Change: Update application to have a running history of all problems 
and solution attempts on a separate screen

• Solution: 
• Implement HistoricQuizView class as an Observer of the QuizModel
• Add HistoricQuizView to the list of QuizModel's observers
• Whenever QuizModel calls notifyObservers, all observers are notified



3/20/2019

9

QuizView

Observer

QuizModel

Observable

QuizController

Problem

HistoricQuizView

Updated Driver

public static void main(String []args)
{

QuizController controller = new QuizController();
QuizModel model = new QuizModel();
QuizView view = new QuizView(model);
view.addListeners(controller);
HistoricQuizView historicView = new HistoricQuizView(model);
model.addObserver(view);
model.addObserver(historicView);

}



3/20/2019

10

Lab 15

Add another observer to the application in the mathQuizObserver
directory. This observer will keep calculate and display the user's 
current score:
• For each correct answer, the add 2 points
• For each wrong answer, subtract 1 point 


