
4/17/2019

1

Dependency Inversion 
Principle

CSCI 2300

Class Dependency

• Class A depends on class B if changes in class B may cause changes in 
class A.

• Example:
• Model has public void battle(int x, int y)
• Controller calls Model's battle method
• Controller depends on Model
• If we change the signature of Model's battle method, we need to make a 

change in controller



4/17/2019

2

public class Projector
{

public void plugHDMI(LargeLaptop machine)
{

machine.connectHDMI();
}

}

A. Projector calls LargeLaptop's method 
and Projector depends on 
LargeLaptop's interface

B. Projector calls LargeLaptop's method, 
but does not depend on 
LargeLaptop's interface

C. LargeLaptop calls Projector's 
metehod and depends on Projector's 
interface

D. LargeLaptop calls Projector's method 
and does not depend on Projector's 
inerface

Identify the 
dependencies in this 
design

Projector Example Explained

• Projector: higher level module – it calls methods of LargeLaptop (and 
Slim Laptop)

• Projector depends on lower level modules
• If lower level modules change, Projector needs to change



4/17/2019

3

Dependency Inversion Principle (DIP)

• High level modules should not depend on low level modules
• Both should depend on abstraction
• Abstractions should not depend on details
• Details should depend upon abstraction

A. Projector calls LargeLaptop's method and 
Projector depends on LargeLaptop's interface

B. Projector calls LargeLaptop's method, but does 
not depend on LargeLaptop's interface

C. LargeLaptop calls Projector's metehod and 
depends on Projector's interface

D. LargeLaptop calls Projector's method and does 
not depend on Projector's inerface

LargeLaptop object is passed to Projector's plugHDMI() 
method. Identify the dependencies.

public class Projector
{

public void plugHDMI(HDMI m)
{

m.connectHDMI();
}

}



4/17/2019

4

Benefits

• Changes to lower level 
modules do not impact 
higher level modules

• New lower level modules 
can be easily added:

• How can we add 
another HDMI device 
to this design (a 
Desktop class, for 
example)?

S.O.L.I.D Design Principles

• S – Single Responsibility Principle
• O – Open/Closed Principle
• L – Liskov Substitution Principle
• I – Interface Segregation Principle
• D – Dependency Inversion Principle



4/17/2019

5

Dependency Inversion Principle 
Exersise


