
4/24/2019

1

Multi-Threaded Applications
with Java

CSCI 2300

Multi-Threading

• Two ore more parts executing concurrently
• Each task handling a different part
• Shared resources:

• Memory
• CPU
• Possibly objects/data
• Synchronization may be needed

4/24/2019

2

Life-Cycle of a Thread

Which of the threads in the diagram below
terminates first?

A. Thread A
B. Thread B
C. Thread C
D. Main Thread
E. Cannot be determined with

the information provided

4/24/2019

3

Threads in Java

• Main thread – starts when
‘main’ method is executed

• Garbage Collector
• “behind the scenes” thread
• Reclaims allocated memory

that is no longer used
• Don’t need to call ‘delete’ or

‘free’ as in C++

Implementation in Java using Runnable

• Implement a Runnable interface

• Instantiate a Thread object using one of Thread’s constructors:

• Call ‘start()’ on the Thread object, which will call run()of the
Runnable target

void run()
When an object implementing interface Runnable is used to create a thread,
starting the thread causes the object's run method to be called in that
separately executing thread.

Thread(Runnable target)Allocates a new Thread object.
Thread(Runnable target, String name)Allocates a new Thread object.

4/24/2019

4

Example
public class Sleepy implements Runnable{

protected Thread thread;

…

public void run(){

//operations of this tread

}

public void start(){

if (thread == null){

thread = new Thread(this);

thread.start();

}

}

}

Instantiating and Starting Sleepy

Sleepy sleepy = new Sleepy(“Bob”);

sleepy.start();

// other operations

• In a single threaded program, execution is blocked until the method
terminates

• sleepy.start() will create a thread and call sleepy.run()
• Execution will proceed to “// other operations” without

waiting for sleepy.run() to terminate
• Review Runnable example linked to today’s lecture on the schedule

4/24/2019

5

Code Example online: What is a possible outcome
of running this code (before Enter is pressed)?
A. Bob: Sleeping

Alice: Sleeping
Bob: Awake
Bob: Sleeping

B. Bob: Sleeping
Bob: Awake
Alice: Sleeping
Bob: Sleeping
Alice: Awake

C. Bob: Sleeping
Alice: Sleeping
Alice: Awake
Alice: Sleeping
Bob: Awake
Bob: Sleeping

D. All of the above are possible

What will happen when Enter is pressed?

A. “Bob: stopped” will be printed before “Alice: stopped”
B. “Alice: stopped” will be printed before “Bob: stopped”
C. The behavior is not deterministic
D. It is possible to have “awake” and “sleeping” messages between

“stopped” messages
E. A & D

4/24/2019

6

Implementation in Java extending Thread

• Create a sub-class of the Java Thread class
• Override run() method of the Thread class
• Call start() method on an object of your new class.

• This will call the run() method you overrode

• The new class inherits all public and protected methods of Thread
• The new class can be substituted for where Thread object is

expected (Liskov Substitution Principle)
• Review Thread example linked to today’s lecture on the schedule

Advantages and Disadvantages of the two
approaches
A. Implementing Runnable gives us the flexibility to extend some

other class (if needed)
B. Extending Thread allows us to use all public methods of Thread

class on our new class
C. A & B
D. None of the above

4/24/2019

7

Precautions: synchronization of shared
resources is important

Account
Balance

$100

Bob Alice

Balance: 100
Bob: withdraw(100)
Alice: withdraw(100)

withdraw(d){
movl balance , %eax
subl d , %eax
movl %eax , balance

}

Application is reading from a database. The
process of reading from a database takes a long
time. While reading from the database, your
application could be doing some other operations.
You are considering placing “read from the
database” operation in a separate thread. Is this a
good idea?
A. Yes, if “other operations” don’t depend on the read from the

database.
B. No, because reading from the database takes a long time.
C. No, because this is dangerous.

4/24/2019

8

You are writing an application that has two
objects: Player and Game. As soon as Player makes
a move, the Game needs to update its state. After
Game state is updated, the Player can make the
next move. You are considering using threads to
speed up processing. Is this a good idea?
A. Yes, because multi-threading can help improve performance.
B. No, because multi-threading should not be used if you need to

guarantee timing of events.
C. No, because multi-threading requires synchronization on shared

data.

You are writing an applicating for analyzing a large
dataset. You know that you can break the dataset
into independent subsets, analyze the subsets and
then combine the results. You are considering
using multi-threading for this. Is this a good idea?

A. Yes, analyzing multiple subsets in parallel will be more efficient than
analyzing the entire dataset at once.

B. No, subsets are part of one dataset, so they are a shared resource
between threads and will require much synchronization.

C. No, this approach adds complexity and does not provide an
advantage

4/24/2019

9

Threads in CSCI 2300

• Next: client-server applications
• Server will have a “listening thread” for accepting client requests
• Server will have a “sending thread” for sending out responses
• Client will have a “sending thread”
• Client will have a “listening thread”

