
4/29/2019

1

Client-Server Application
Basic Chat

CSCI 2300

First client-server application

Client Server

1. Open socket
connection to server

2. Generate message
3. Send message to

server
4. Terminate

1. Wait for a client
connection

2. Read message from
connected socket

3. Terminate

4/29/2019

2

Modification: Server continues to accept
client connections

Client
Server

1. Open socket
connection to server

2. Generate message
3. Send message to

server
4. Terminate

THREAD A
1. Wait for a client

connection
2. Read message from

connected socket
3. Repeat

1. Start thread A
2. Wait for
termination signal
2. Terminate all
threads

The repeat subdirectory

• TextMessage – unchanged
• Client – minor change: to run Client, you must provide <NAME> on

command line: java -cp $CLASSPATH Kate
• Server – implements runnable (THREAD A on the previous diagram)

public void run()
{

while (thread != null)
{

readTextMessage();
}

}

• Accepts client
connection

• Reads message
from client

4/29/2019

3

In repeat subdirectory, which of the
following statements is true
A. A connected client can send multiple messages to the server
B. The server can accept multiple client connections, one at a time
C. The server can read messages from multiple clients in parallel
D. The server sends a response to a client, after receiving a message
E. All of the above

Modification: client can send multiple
messages to the server

Client

1. Open socket
connection to server

2. Start a thread S

THREAD S
1. Generate message
2. Send message to

server
3. Repeat

4/29/2019

4

Modification: server can read messages from
multiple clients in parallel

Server

THREAD A
1. Wait for a client

connection
2. Start thread R
3. Repeat

1. Start a thread A
2. Wait for
termination signal
3. Terminate all
threads

THREAD R
1. Read message from

socket
2. Print message
3. Repeat

The multi subdirectory
• TextMessage - unchanged
• Client implements Runnable (THREAD S on the previous Client diagram)
• Server’s run() method modified:

• Repeatedly calls acceptNewClient()
• acceptNewClient()accepts client connection and starts
ChatServerThread

• ChatServerThread – new class (THREAD R on the previous Server diagram)
• ssh –X hopper.slu.edu
cd <your git repo>/client_server/client_server
source ./configure.sh
cd multi
javac -cp $CLASSPATH *.java
java –cp $CLASSPATH Client <YOUR_NAME>

4/29/2019

5

Basic Chat Application

• Server – needs to forward messages to all connected clients
• Client – needs to “listen” for messages from the server

Client

1. Open socket
connection to server

2. Start thread L
3. Start a thread S

THREAD S
1. Generate message
2. Send message to

server
3. Repeat

THREAD L
1. Read message from

socket
2. Print message
3. Repeat

Basic Chat – Server side

• ChatServerThread – receives messages from one client
• Need to “forward” these messages to all clients
• Server has access to all client connections

• ChatServerThread can pass the message to Server
• Server can forward the message to all clients
• ChatServerThread needs a reference to Server

4/29/2019

6

Server forwards messages to connected
clients

Server

THREAD A
1. Wait for a client

connection
2. Start thread R
3. Repeat

1. Start a thread A
2. Wait for
termination signal
3. Terminate all
threads

THREAD R
1. Read message from socket
2. Call server.forward(message)

3. Repeat

Modifications in basic_chat

• Client starts thread L
• SocketReaderThread – new class (THREAD L)
• Server forwardMessage(JsonObject message) method

added
• Added “locking” to ensure safe access to shared resource:

• forwardMessage()
• acceptNewClient()

4/29/2019

7

What is the responsibility of
SocketReaderThread?
A. Print messages to the screen
B. Read messages from a socket connection
C. Send messages to the server
D. Forward messages to other clients
E. All of the above

SocketReaderThread and ChatServerThread

• Responsibility: Read messages from a connected socket
• SocketReadereThread – prints received messages
• ChatServerThread – prints received messages and calls
server.forwardMessage()

• Identical responsibility, two different implementations
• Can we combine them into one class?

4/29/2019

8

MessageReceiver interface

• public void addMessage(JsonObject message);

• Client implements MessageReceiver
• Print the message to the screen

• Server implements MessageReceiver
• Forward the message to all connected clients

• SocketReaderThread
• has a reference to a MessageReceiver
• Calls addMessage(message) on MessageReceiver, after reading a

message from a socket

