
5/1/2019

1

Chat Application:
improvements

CSCI 2300

Latest design

• Server
• accepts multiple clients (implemented in Server.java)
• new thread per client (ChatServerThread)
• each thread ‘forwards’ message to the server, then server sends ‘forwarded’

messages to all connected clients

• Client
• one thread for sending messages (implemented in Client.java)
• one thread for receiving messages (SocketReaderThread.java)

5/1/2019

2

Server

main() thread

Accept clients thread

ChatServerThread
ChatServerThread

ChatServerThread

Client

main() thread

Send thread

SocketReaderThread

server.forwardMessage(message)

System.out.println(message)

SocketReaderThread and ChatServerThread

• Responsibility: Read messages from a connected socket
• SocketReadereThread – prints received messages
• ChatServerThread – prints received messages and calls
server.forwardMessage()

• Identical responsibility, two different implementations
• Can we combine them into one class?

5/1/2019

3

MessageReceiver interface

• public void addMessage(JsonObject message);

• Client implements MessageReceiver
• Print the message to the screen

• Server implements MessageReceiver
• Forward the message to all connected clients

• SocketReaderThread
• has a reference to a MessageReceiver
• Calls addMessage(message) on MessageReceiver, after reading a

message from a socket

Class Diagram
<<Interface>>

MessageReceiver
+addMessage(JsonObject)

Client Server

SocketReaderThread

5/1/2019

4

Server

main() thread

Accept clients thread

ChatServerThread
ChatServerThread

SocketReaderThread

Client

main() thread

Send thread

SocketReaderThread

receiver.addMessage(message)

receiver.addMessage(message)

The basic_chat_improved directory

• Functionally equivalent to basic_chat directory
• Nicer design:

• Reusing SocketReaderThread instead of duplicating code

• OO Design Principle: Don’t Repeat Yourself (DRY)
• Duplication is wasteful: bug fixes need to be duplicated
• Avoid duplication by applying abstraction

5/1/2019

5

Adding GUI

Messages Received

Message you type

GUI Example

From Kate: Hello
From John: Hey
From Zoe: Greetings!

Did you finish your homework?

5/1/2019

6

ChatGUI.java

Messages Received

Message you type

JTextArea

JTextField

ActionListener:
Send message to

server

MessageSender Interface

• Another abstraction
• Define sendMessage(String message)method
• ChatGUI takes MessageSender in constructor
• ActionListener of JTextField calls sendMessage() of
MessageSender

5/1/2019

7

<<Interface>
MessageSender

+ sendMessage(String message)

ChatGUI ???

Given the class diagram above, which class should be in the
box labelled with question marks?
A. Client D. ChatGUI
B. Server E. TextMessage
C. SocketReaderThread

Tying objects together

• Client client = new Client(name, host_ip, port);

• Client implements MessageSender
• ChatGUI gui = new ChatGUI(client);

5/1/2019

8

Next: update “Messages Received”

Messages Received

Message you type

JTextArea

Which Interface should be used to update
“Messages Received” text area
A. MessageSender
B. MessageReceiver
C. Need to define a new interface

5/1/2019

9

Option 1 – blue
connections

SocketReaderThread MessageReceiver

ClientChatGUI

Option 2 – green
connections

Which design is implemented in gui_chat directory?
A. Option 1 B. Opton 2

Final changes

• ChatGUI class
• updateHistory(TextMessage message)

• Client’s implementation of addMessage() (of MessageReceiver
interface)

• call gui.updateHistory(messageReceived)
• Client has a new method for adding ChatGUI to it:

• addGUI(ChatGUI gui)

• ChatGUI main:
• Client client = new Client(name, host_ip, port);
• ChatGUI gui = new ChatGUI(client);
• client.addGUI(gui);

