
1/24/2019

1

Breaking a Problem into 
Classes

CSCI 2300

Problem Statement

• I want an electronic catalog of all the books I have. As the first step, I 
want a program that I can use to add basic book information. I also 
want to be able to list the books I have entered so far, and search my 
"catalog" by author or by title.

• Break the problem statement into objects
• Look for nouns

• Identify actions
• Look for verbs

• Determine which actions/behaviors belong to which object



1/24/2019

2

I want an electronic catalog of all the books I have. As the first step, I 
want a program that I can use to add basic book information. I also want 
to be able to list the books I have entered so far, and search my 
"catalog" by author or by title.

• Objects (nouns)
Catalog
Book
Author
Title

• Actions (verbs)
Add
List
Search

Which object is responsible 
for each action?

Combine objects

• Which objects are "attributes" of other objects?

• Catalog has Book(s)
• Book has Title
• Book has Author



1/24/2019

3

Putting it all together – define interfaces

Book
String title;
Author author;
Book(String t, Author a)

Author
String firstName
String lastName
Author(String f, String l)

Catalog
ArrayList<Book> books
Book[] list()
void add(Book b)
Book[] searchByTitle(String title)
Book[] searchByAuthor(String name)

Interface of a class the 
list of its methods and 
variables

Sketch of the solution using defined 
interfaces
• User needs ability to

• Enter a book
• Search by author
• Search by title

• The main() method:
• Displays a basic "menu"
• Reads input from user
• Performs actions based on input



1/24/2019

4

Iterative solutions

Iteration 1 - Sketch
• Defined class interfaces
• Basic structure of the main() method, with implementation for:

• Printing menu
• Getting user's selection
• Reacting to user's selection
• Fully implemented 'add' functionality

• In BookCatalog
• searchByTitle() and searchByAuthor() are not yet fully 

implemented
• These methods are used by CatalogMenu
• We don't need to know implementation details in order to use 

these methods!
• What do we need to know in order to use these methods?



1/24/2019

5

Iteration 2 - Details

• Implemented details of CatalogMenu class
• Using defined interfaces
• Identified that Book class needs toString() method

• If we add a method to the Book interface, will it break 
any of the existing code?

• If we change a method of the Book interface, will it 
break any of the existing code?

Iteration 3 – Working Solution

• Added a loop in main()
• Implemented methods of BookCatalog
• Identified that Book needs titleMatches(String) and 
authorMatches(String)methods

• Identified that Author needs getFirstName() and 
getLastName()methods



1/24/2019

6

Iteration 4 – Improved Solution

• Added feature: load books from CSV
• Modified main menu
• Added methods to BookCatalog class

• public void fromCSV(String)
• private void fromScanner(Scanner)
• fromCSV() uses fromScanner()

Summary

• Start with a high level break down of objects and actions
• Design class interfaces
• Put together main() structure
• Implement the methods used by main()
• Implement interfaces
• Add features



1/24/2019

7

Your CSCI 2300 git repos are 
ready
Submit your labs to csci2300 git repos by Friday, Jan 25
Only submit .java files (do not submit .class)

Your ‘git’ repositories

• Everyone has an account on git.cs.slu.edu
• You have a repository for Spring 2019 CSCI 2300
• Log in to git.cs.slu.edu using your git credentials
• Open a linux terminal and create a directory where you’ll store you git

repositories
• Clone your git repository:

git clone git@git.cs.slu.edu:courses/spring19/csci_2300/<LOGIN>.git
Example:
git clone git@git.cs.slu.edu:courses/spring19/csci_2300/aguayoj.git


