
1/29/2019

1

Inheritance
CSCI 2300

Topics Overview

• Organize classes into hierarchy, to avoid code duplication
• Form of ‘generalization’
• Put all common variables and methods into the parent class
• Put specialized variables and methods into subclasses
• Subclass inherits variables and methods of the parent class (and

‘grand-parent’ class)
• Subclass can override methods of the parent class – change the

behavior

1/29/2019

2

Organize classes into hierarchy, to avoid code
duplication

Generalization
about any
soccer player

Java Syntax and UML (Unified Modeling
Language)

public class GoalKeeper extends SoccerPlayer{ }

1/29/2019

3

public class Point2D
{

private int x;
private int y;
public Point2D(int x, int y);
public int getX();
public int getY();

} public class Point3D extends Point2D
{

private int z;
public Point3D(int x, int y, int z)
{

super(x, y);
this.z = z;

}
public int getZ();

}

Put all common variables and
methods into the parent class

Put specialized variables and
methods into subclasses Keyword super refers

to parent class

Keywords ‘super’ and ‘this’

• this – keyword that can be used inside a class to refer to the calling
object

• super – keyword that can be used inside a class to refer to the
parent class

• super(args) – calls the constructor of the parent class
• If used in the constructor of a derived class, must be the first thing that

happens

1/29/2019

4

public class Point2D
{
private int x;
private int y;
public Point2D(int x, int y);
public int getX();
public int getY();

}
public class Point3D extends Point2D
{
private int z;
public Point3D(int x, int y, int z);
public int getZ();

}

A. Point3D p3 = new Point3D(0,0,0);
B. int x = p3.getX();
C. int y = p3.getY();
D. int z = p3.getZ();
E. None: all are valid

Which of the following calls is
invalid?

Subclass has access to all
public and protected
variables and methods of
the parent class

public class Point2D
{
private int x;
private int y;
public Point2D(int x, int y);
public int getX();
public int getY();

} public class Point3D extends Point2D
{
private int z;
public Point3D(int x, int y, int z)
{

this.x = x; // COMPILER ERROR
super(x,y); // OK
this.z = z; // OK

public int getZ();
}

1/29/2019

5

Subclass can override (change) the behavior
of a parent class

Circle
+ float getArea();

Cylinder
+ float getArea();

public class Cylinder extends Circle
{

private int height;
public Cylinder(int r, int h);
@Override
public float getArea()
{

float circleArea = super.getArea();
float circ = super.getCircumference();
return 2*circleArea + circ * height;

}
}

Method overriding

• @Override – annotation that asks compiler to check whether there is
such a method in the superclass to be overridden

• Optional
• Nice to have
• Helps if you misspell the method name
• Has no effect on the execution of the program

1/29/2019

6

Default – no arguments constructor

• If no constructor is defined, a default constructor is automatically
generated
public ClassName()
{

super();
}

public class Document
{
public Document(String title);

}

public class Book extends Document
{

public void setTitle(String t);
public void setAuthor(String a);
public String getTitle()

}

Book b = new Book();

A. This code will work.
B. This code will not work because

Book does not have a no-
argument constructor.

C. This code will not work because
Document does not have a no-
argument constructor.

D. This code will not work because
Document only has a constructor

Consider the instantiation
of the Book class below:

1/29/2019

7

Example: Circle and Cylinder
• Reusability principle of OOP

• Reusing Circle class

• Cylinder inherits methods from the Circle class
• Cylinder overrides methods of the Circle class
• Cylinder adds cylinder specific variable and

methods
• Code example on the class site

Lab 4: create lab4 directory in csci2300

• You are designing software for an auto dealership. The dealership
sells cars, trucks, and motorcycles. All vehicles are identified by their
make, model, and year. Vehicles differ in the following features:

• Trucks
• Bed length, number of doors, towing capacity

• Cars
• Number of doors, body style: sedan/station wagon/mini-van

• Motorcycles
• Type: street, off-road, dual purpose
• Can have a sidecar

• Design classes to represent the information of your auto dealership.
Write a Driver class that creates an object of each class you wrote and
prints out attribute information of your objects. Make sure to add
toString() method to each class to make printing easier.

