
4/26/2019

1

Software Architecture Intro
CSCI 3300/5300

Design & Architecture

• Are these concepts the same or different?
• Common definitions: 

• Architecture – high level design of the system
• Design – low level details

• Problem with this definition: high level design depends on the low level 
details

• Design and Architecture have a strong connection
• Alternate definition:

• Design – definition of the system modules and interactions between modules
• Architecture – bundling modules into components/packages and interactions 

between components



4/26/2019

2

The Acyclic Dependencies Principle

• Suppose a new version of 
package B is released

• Developers of package A can 
choose to use the new version 
or not

• Developers of package C can 
choose to use the new version 
of packages A & B or not

Package A Package B

Package C

The Acyclic Dependencies Principle

• Suppose a new version of 
package B is released

• Changes to package B require 
changes to package C, which 
require changes to package A.

• A, B, & C now became one 
large package

Package A Package B

Package C



4/26/2019

3

Breaking the cycle: Dependency Inversion 
Principle
• There is a class X in 

package C that package B 
needs.

• Create an "interface" (in 
Java terms) for that class, 
put it in package B and 
have class X implement 
that interface

• Now package C depends 
on package B

Package A Package B

Package C

Breaking the cycle: Jitters

• Component structure is 
changing as requirements 
change

• Introduce a new 
component, on which 
both B and C depend

Package A Package B

Package C Package D



4/26/2019

4

Family Tree Project

• https://github.com/kate-
holdener/family-tree

• Overview

Monolithic "architecture"

• Everything in one package
• Four classes:

• FamilyMember – one person with mother and faather
• FamilyTree – a collection of family members

• Loads data from csv file
• Identifies parents, siblings, and children of a given person

• FamilyTreeGui – Java SWING API for the application
• BuildFamilyTree – command line interface for the application



4/26/2019

5

Evaluate this architecture in terms of

• Agility – if requirements change, how easy is it to change the 
application?

• Easy of deployment – if one component changes, how easy is it to re-
deploy the software

• Testability – how easy is it to test this solution
• Scalability – as the application grows, how easy it is to maintain the 

code, find the right package, etc
• Ease of development – can a team of developers easily split up the 

work without interfering with each other?

Layered Architecture

• Several "horizontal" layers
• Each layer represents a different 

"user"
• Each layer can use only adjacent 

layers
• In our family tree example

• User interface
• Application
• Database
• (Driver)



4/26/2019

6

Evaluate this architecture in terms of

• Agility – if requirements change, how easy is it to change the 
application?

• Easy of deployment – if one component changes, how easy is it to re-
deploy the software

• Testability – how easy is it to test this solution
• Scalability – as the application grows, how easy it is to maintain the 

code, find the right package, etc
• Ease of development – can a team of developers easily split up the 

work without interfering with each other?

Useful links:

• https://www.oreilly.com/ideas/software-architecture-
patterns/page/3/event-driven-architecture

• https://www.oreilly.com/ideas/software-architecture-
patterns/page/7/pattern-analysis-summary


